CNS Core: Small: Towards Timing-Predictable Autonomy in DNN-driven Embedded Systems

CNS 核心:小型:在 DNN 驱动的嵌入式系统中实现时序可预测的自主性

基本信息

  • 批准号:
    2135625
  • 负责人:
  • 金额:
    $ 48.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Machine learning techniques, particularly deep neural networks (DNNs), are enabling dramatically better autonomy in important domains, such as robotics and transportation. For instance, in automotive systems, DNNs are used to map raw pixels from on-vehicle cameras to steering control decisions. Recent end-to-end self-driving frameworks even make it possible for DNNs to learn to self-steer from limited human driving datasets. NVIDIA and Audi recently announced their plans to deliver DNN-based automated vehicles. A major challenge of safely and reliably adopting DNNs in any safety-critical embedded systems (e.g., cars) is the need to ensure timing predictability (i.e., enabling timing constraints to be analytically validated at design time), which is one of the most important tenets in the certification required for such safety-critical systems. For example, the functional correctness of an automobile hinges crucially upon temporal correctness, as the control operations depend on the processing of certain environmental sensing and computation tasks within specific time constraints. Unfortunately, it is not straightforward to achieve timing predictability in such systems, due to the resource bottlenecks that DNNs can impose. The goal of this research is to achieve timing predictability in DNN-driven autonomous embedded systems. A novel system model leveraging Heijunka, a mature production leveling approach first developed by Toyota, will be established. New DNN-aware, real-time resource allocation methods and associated analysis techniques for validating timing constraints will be developed that can be applied in DNN-driven embedded systems. Moreover, an open-source ecosystem with efficient memory management under heterogeneous hardware architectures will be implemented. The outcome of this project will pave the way to enable DNN-driven solutions to be safely and confidently adopted in many embedded domains in which timing predictability is a natural requirement. This project will also result in a pipeline of computer engineers and scientists who are skilled in the interdisciplinary nature of DNN-driven embedded systems, as well as increase awareness of real-time and autonomous system design concepts among students at all academic levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习技术,特别是深度神经网络 (DNN),正在显着提高机器人和交通等重要领域的自主性。例如,在汽车系统中,DNN 用于将车载摄像头的原始像素映射到转向控制决策。最近的端到端自动驾驶框架甚至使 DNN 能够从有限的人类驾驶数据集中学习自动驾驶。 NVIDIA 和奥迪最近宣布计划推出基于 DNN 的自动驾驶汽车。在任何安全关键嵌入式系统(例如汽车)中安全可靠地采用 DNN 的一个主要挑战是需要确保时序可预测性(即,能够在设计时对时序约束进行分析验证),这是最重要的挑战之一此类安全关键系统所需的认证原则。例如,汽车的功能正确性很大程度上取决于时间正确性,因为控制操作取决于特定时间限制内某些环境感测和​​计算任务的处理。不幸的是,由于 DNN 可能造成资源瓶颈,在此类系统中实现时序可预测性并不简单。本研究的目标是在 DNN 驱动的自主嵌入式系统中实现时序可预测性。将建立一种利用Heijunka(丰田首先开发的成熟生产均衡方法)的新颖系统模型。将开发新的 DNN 感知、实时资源分配方法和用于验证时序约束的相关分析技术,可应用于 DNN 驱动的嵌入式系统。此外,还将实现异构硬件架构下高效内存管理的开源生态系统。该项目的成果将为 DNN 驱动的解决方案在许多嵌入式领域中安全、自信地采用铺平道路,在这些领域中,时序可预测性是自然的要求。该项目还将培养一批精通 DNN 驱动的嵌入式系统的跨学科性质的计算机工程师和科学家,并提高各个学术级别的学生对实时和自主系统设计概念的认识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cong Liu其他文献

Examining the mediating effect of supervisor conflict on procedural injustice-job strain relations: the function of power distance.
检验主管冲突对程序不公正-工作紧张关系的中介作用:权力距离的函数。
Effects of chitosan, gallic acid, and algicide on the physiological and biochemical properties of Microcystis flos-aquae
壳聚糖、没食子酸和灭藻剂对水花微囊藻生理生化特性的影响
A comparison of treatment with adefovir and entecavir for chronic hepatitis B in China: The 2-year results of a prospective study
中国阿德福韦和恩替卡韦治疗慢性乙型肝炎的比较:一项前瞻性研究的2年结果
  • DOI:
    10.3760/cma.j.issn.1003-9279.2014.02.002
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    E. Chen;Tao;Li Liu;Cong Liu;M. Lei;Hong Tang
  • 通讯作者:
    Hong Tang
Difficulty-Based SPOC Video Clustering Using Video-Watching Data
使用视频观看数据的基于难度的 SPOC 视频聚类
  • DOI:
    10.1587/transinf.2020edp7106
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Zhang;Di Liu;Cong Liu
  • 通讯作者:
    Cong Liu
Shared-Resource-Centric Limited Preemptive Scheduling: A Comprehensive Study of Suspension-Based Partitioning Approaches
以共享资源为中心的有限抢占式调度:基于暂停的分区方法的综合研究

Cong Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cong Liu', 18)}}的其他基金

Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
  • 批准号:
    2312397
  • 财政年份:
    2023
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Continuing Grant
RUI: Relationship crafting after workplace ostracism in racial minority employees: The role of autonomic arousal, emotions, and cognitive attributions
RUI:少数族裔员工在工作场所受到排斥后的关系塑造:自主唤醒、情绪和认知归因的作用
  • 批准号:
    2243983
  • 财政年份:
    2023
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
CNS Core: Small: Towards Timing-Predictable Autonomy in DNN-driven Embedded Systems
CNS 核心:小型:在 DNN 驱动的嵌入式系统中实现时序可预测的自主性
  • 批准号:
    2300525
  • 财政年份:
    2022
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
CAREER: D3: Addressing Emerging Data-Induced Challenges in Embedded and Real-Time Systems
职业:D3:解决嵌入式和实时系统中新出现的数据引发的挑战
  • 批准号:
    2230968
  • 财政年份:
    2022
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: CPS: Medium: Timeliness vs. Trustworthiness: Balancing Predictability and Security in Time-Sensitive CPS Design.
协作研究:CPS:中:及时性与可信度:在时间敏感的 CPS 设计中平衡可预测性和安全性。
  • 批准号:
    2230969
  • 财政年份:
    2022
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Timeliness vs. Trustworthiness: Balancing Predictability and Security in Time-Sensitive CPS Design.
协作研究:CPS:中:及时性与可信度:在时间敏感的 CPS 设计中平衡可预测性和安全性。
  • 批准号:
    2038727
  • 财政年份:
    2021
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
CAREER: D3: Addressing Emerging Data-Induced Challenges in Embedded and Real-Time Systems
职业:D3:解决嵌入式和实时系统中新出现的数据引发的挑战
  • 批准号:
    1750263
  • 财政年份:
    2018
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Continuing Grant
CSR: Small: Predictable Real-Time Computing in GPU-enabled Systems
CSR:小型:支持 GPU 的系统中的可预测实时计算
  • 批准号:
    1527727
  • 财政年份:
    2015
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
US-Singapore Workshop: Collaborative Research: Understand the World by Analyzing Many Video Streams
美国-新加坡研讨会:合作研究:通过分析许多视频流了解世界
  • 批准号:
    1427824
  • 财政年份:
    2014
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
  • 批准号:
    82301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
  • 批准号:
    2400463
  • 财政年份:
    2023
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
  • 批准号:
    2229454
  • 财政年份:
    2023
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 48.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了