Collaborative Research: A Data Challenge for the Next Generation of Ground-Based Gravitational Wave Detectors

协作研究:下一代地基引力波探测器的数据挑战

基本信息

  • 批准号:
    2207387
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The National Science Foundation’s Laser Interferometer Gravitational Wave Observatory (LIGO) has begun a new era in the exploration of the Universe. Scientists can now use gravitational waves, ripples in the fabric of spacetime, to explore distant objects like black holes and neutron stars. As LIGO continues to explore the universe, scientists are making plans for the next generation of gravitational-wave observatories; observatories that can see every black hole merger in the universe and have the potential to reveal the physics that governs the behavior of dense matter. In the United States, the community has been developing a design for a detector called Cosmic Explorer and Europe is proposing a complementary observatory known as the Einstein Telescope. Achieving the scientific potential of these observatories requires advanced algorithms and computational techniques that need to be developed now, so these algorithms are ready when the detectors begin exploring the gravitational-wave sky in the 2030s. These skills that students will learn developing these technologies will advance the competitiveness of the U.S. STEM workforce. This award will also support an effort to bring high-performance computing to school districts in rural Pennsylvania and promote STEM education in K-12 schools.A series of progressively more difficult data challenges will be created to confront the data-analysis hurdles presented by the next generation of gravitational-wave detectors. These challenges will: (i) inform the progress that would need to be made in the development of new algorithms for efficient detection and parameter inference, (ii) help estimate the computational resources required to fully exploit the science potential of next-generation detectors and (iii) build and engage a community of researchers that is ready to explore the Universe with this new observational window. This award will provide an opportunity to determine if science results from the signal-rich data of future detectors can be reliably extracted and stimulate research in the development of new analysis and inference algorithms that can deal with overlapping multiple signal types and strengths, of varying duration and cadence, all buried in data with non-stationarities and gaps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Salvatore Vitale其他文献

Nonparametric analysis of correlations in the binary black hole population with LIGO-Virgo-KAGRA data
使用 LIGO-Virgo-KAGRA 数据对双黑洞群中的相关性进行非参数分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jack Heinzel;Matthew Mould;Salvatore Vitale
  • 通讯作者:
    Salvatore Vitale
Probing correlations in the binary black hole population with flexible models
用灵活的模型探测双黑洞群中的相关性
  • DOI:
    10.1103/physrevd.109.103006
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    J. Heinzel;Salvatore Vitale;S. Biscoveanu
  • 通讯作者:
    S. Biscoveanu
Improvement in insulin sensitivity after switching from an integrase inhibitor-based regimen to doravirine/tenofovir disoproxil fumarate/lamivudine in people with significant weight gain.
对于体重显着增加的人群,从基于整合酶抑制剂的治疗方案转为多拉韦林/富马酸替诺福韦二吡呋酯/拉米夫定后,胰岛素敏感性得到改善。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3
  • 作者:
    L. Calza;Maddalena Giglia;V. Colangeli;I. Bon;Salvatore Vitale;Pierluigi Viale
  • 通讯作者:
    Pierluigi Viale

Salvatore Vitale的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Salvatore Vitale', 18)}}的其他基金

Conference: Physics and Astrophysics at the Extreme (PAX) Workshop
会议:极限物理和天体物理学 (PAX) 研讨会
  • 批准号:
    2228849
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAREER: Populations and Systematic Uncertainties in the Era of the Advanced Gravitational-Wave Detectors
职业:先进引力波探测器时代的群体和系统不确定性
  • 批准号:
    2045740
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多组学数据的DNA甲基化与组蛋白修饰协作调控研究
  • 批准号:
    62371347
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向车联网网络流量数据的多方协作学习风险控制机制研究
  • 批准号:
    62373094
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
    52205528
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动的在线学习协作会话过程监测与干预机制研究
  • 批准号:
    72174070
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了