Collaborative Research: CPS: Small: Co-Design of Prediction and Control Across Data Boundaries: Efficiency, Privacy, and Markets
协作研究:CPS:小型:跨数据边界的预测和控制的协同设计:效率、隐私和市场
基本信息
- 批准号:2133481
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today, operators of cellular networks and electricity grids measure large volumes of data, which can provide rich insights into city-wide mobility and congestion patterns. Sharing such real-time societal trends with independent, external entities, such as a taxi fleet operator, can enhance city-scale resource allocation and control tasks, such as electric taxi routing and battery storage optimization. However, the owner of a rich time series and an external control authority must communicate across a data boundary, which limits the scope and volume of data they can share. This project will develop novel algorithms and systems to jointly compress, anonymize, and price rich time series data in a way that only shares minimal, task-relevant data across organizational boundaries. By emphasizing communication efficiency, the developed algorithms will incentivize data sharing and collaboration in future smart cities.The key motivation of this work is that today's representations of time series data are designed independently of an ultimate control task, which often causes unnecessary temporal features to be sent, private features to be revealed, and the most salient trends to be under-valued. Accordingly, this project will develop a unified approach to co-design succinct, private representations of rich time series data along with an ultimate control task. Here, co-design means that the forecast representation is learned within the broader context of a control objective while accounting for bandwidth constraints, privacy, and economic costs and incentives for data processing. The algorithms will compute a controller's sensitivity to prediction errors, which can arise from data compression, forecast uncertainty, as well as artificial noise injected by modern privacy tools. Crucially, the controller's sensitivity will in turn be relayed to a network operator to guide its optimization and learning (e.g., co-design) of a concise, task-relevant forecast representation that masks private attributes and naturally prices temporal features by their importance to control. The research will, for example, enable operators to flexibly use the same underlying cell demand data to emphasize peak-hour variability for taxi routing, while seamlessly delivering fine-grained throughput forecasts to a mobile video streaming company without revealing private user mobility. Finally, the case studies in this project will be integrated into courses on learning-based control at UT Austin and Cornell. Broader impacts also include outreach and inclusion efforts to engage students from groups that have historically been under-represented in STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今,蜂窝网络和电网运营商测量大量数据,这些数据可以提供有关全市交通和拥堵模式的丰富见解。与出租车车队运营商等独立的外部实体共享此类实时社会趋势,可以增强城市规模的资源分配和控制任务,例如电动出租车路线和电池存储优化。然而,丰富时间序列的所有者和外部控制机构必须跨数据边界进行通信,这限制了他们可以共享的数据范围和数量。该项目将开发新颖的算法和系统,以仅跨组织边界共享最少的任务相关数据的方式联合压缩、匿名化和定价丰富的时间序列数据。通过强调通信效率,所开发的算法将激励未来智慧城市中的数据共享和协作。这项工作的主要动机是,当今时间序列数据的表示是独立于最终控制任务而设计的,这通常会导致不必要的时间特征发送,私人特征被揭示,以及最显着的趋势被低估。因此,该项目将开发一种统一的方法来共同设计丰富的时间序列数据的简洁、私有表示以及最终的控制任务。在这里,协同设计意味着在更广泛的控制目标背景下学习预测表示,同时考虑带宽限制、隐私、经济成本和数据处理的激励。这些算法将计算控制器对预测误差的敏感度,预测误差可能由数据压缩、预测不确定性以及现代隐私工具注入的人工噪声引起。至关重要的是,控制器的敏感性将反过来传递给网络运营商,以指导其优化和学习(例如,协同设计)简洁的、与任务相关的预测表示,该预测表示掩盖私有属性,并根据控制的重要性自然地对时间特征进行定价。例如,该研究将使运营商能够灵活地使用相同的底层小区需求数据来强调出租车路线的高峰时段变化,同时无缝地向移动视频流公司提供细粒度的吞吐量预测,而不会泄露私人用户的移动性。最后,该项目的案例研究将被纳入德克萨斯大学奥斯汀分校和康奈尔大学基于学习的控制课程中。更广泛的影响还包括外展和包容性努力,以吸引来自历史上在 STEM 领域代表性不足的群体的学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Task-aware Distributed Source Coding under Dynamic Bandwidth
动态带宽下的任务感知分布式源编码
- DOI:10.48550/arxiv.2305.15523
- 发表时间:2023-05-24
- 期刊:
- 影响因子:0
- 作者:Po;S. Ankireddy;Ruihan Zhao;Hossein Nourkhiz Mahjoub;Ehsan Moradi;U. Topcu;S;eep P. Chinchali;eep;Hyeji Kim
- 通讯作者:Hyeji Kim
Task-aware Privacy Preservation for Multi-dimensional Data
多维数据的任务感知隐私保护
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Cheng, J.;Tang, A.;Chinchali, S.
- 通讯作者:Chinchali, S.
Data Sharing and Compression for Cooperative Networked Control
协作网络控制的数据共享和压缩
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Cheng, J.;Pavone, M.;Katti, S.;Chinchali, S.;& Tang, A.
- 通讯作者:& Tang, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandeep Chinchali其他文献
Drift Reduced Navigation with Deep Explainable Features
具有深度可解释功能的减少漂移导航
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mohd. Omama;Sundar Sripada Venugopalaswamy Sriraman;Sandeep Chinchali;Ashutosh Kumar Singh;K. Krishna - 通讯作者:
K. Krishna
ALT-Pilot: Autonomous navigation with Language augmented Topometric maps
ALT-Pilot:使用语言增强地形图进行自主导航
- DOI:
10.48550/arxiv.2310.02324 - 发表时间:
2023-10-03 - 期刊:
- 影响因子:0
- 作者:
Mohammad Omama;Pranav Inani;Pranjal Paul;Sarat Chandra Yellapragada;Krishna Murthy Jatavallabhula;Sandeep Chinchali;Madhava Krishna - 通讯作者:
Madhava Krishna
Sandeep Chinchali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandeep Chinchali', 18)}}的其他基金
RINGS: Collaborative Inference and Learning between Edge Swarms and the Cloud
RINGS:边缘群和云之间的协作推理和学习
- 批准号:
2148186 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
- 批准号:22361004
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
- 批准号:82273390
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
GPER通过“barcode”磷酸化修饰调控β-arrestin/SH3-CPs信号介导肺腺癌EGFR-TKI原发耐药的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能交通认知的CPS计算架构与可解释深度学习模型研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
尿素循环限速酶CPS1异常介导代谢重编程调控肝癌发生的功能机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant