Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems

协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析

基本信息

  • 批准号:
    2132285
  • 负责人:
  • 金额:
    $ 38.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Smart home products have become extremely popular with consumers due to the convenience offered through home automation. In bridging the cyber-physical gap, however, home automation brings a widening of the cyber attack surface of the home. Research towards analyzing and preventing security and safety failures in a smart home faces a fundamental obstacle in practice: the poor characterization of home automation usage. That is, without the knowledge of how users automate their homes, it is difficult to address several critical challenges in designing and analyzing security systems, potentially rendering solutions ineffective in actual deployments. This project aims to bridge this gap, and provide researchers, end-users, and system designers with the means to collect, generate, and analyze realistic examples of home automation usage. This approach builds upon a unique characteristic of emerging smart home platforms: the presence of "user-driven" automation in the form of trigger-action programs that users configure via platform-provided user interfaces. In particular, this project devises methods to capture and model such user-driven home automation to generate statistically significant and useful usage scenarios. The techniques that will be developed during the course of this project will allow researchers and practitioners to analyze various security, safety and privacy properties of the cyber-physical systems that comprise modern smart homes, ultimately leading to deployments of smart home Internet of Things (IoT) devices that are more secure. The project will also produce and disseminate educational materials on best practices for developing secure software with an emphasis on IoT devices, suitable for integration into existing computer literacy courses at all levels of education. In addition, the project will focus on recruiting and retaining computer science students from traditionally underrepresented categories. This project is centered on three specific goals. First, it will develop novel data collection strategies that allow end-users to easily specify routines in a flexible manner, as well as techniques based on Natural language Processing (NLP) for automatically processing and transforming the data into a format suitable for modeling. Second, it will introduce approaches for transforming routines into realistic home automation event sequences, understanding their latent properties and modeling them using well-understood language modeling techniques. Third, it will contextualize the smart home usage models to make predictions that cater to security analyses specifically and develop tools that allow for the inspection of a smart home’s state alongside the execution of predicted event sequences on real products. The techniques and models developed during the course of this project will be validated with industry partners and are expected to become instrumental for developers and researchers to understand security and privacy properties of smart homes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
然而,由于家庭自动化提供的便利性,智能家居产品已变得非常受消费者欢迎。然而,在弥合网络物理差距方面,家庭自动化带来了家庭网络攻击面的扩大,以分析和预防安全。智能家居的故障在实践中面临着一个根本性障碍:家庭自动化使用情况的描述不清晰,也就是说,如果不了解用户如何实现家庭自动化,就很难解决设计和分析安全系统时的几个关键挑战,从而可能导致出现问题。该项目的目标是解决方案在实际部署中无效。旨在弥合这一差距,并为研究人员、最终用户和系统设计人员提供收集、生成和分析家庭自动化使用的实际示例的方法。这种方法建立在新兴智能家居平台的独特特征之上:“存在”。用户驱动的“自动化”以触发动作程序的形式出现,用户通过平台提供的用户界面进行配置。特别是,该项目设计了捕获和建模此类用户驱动的家庭自动化的方法,以生成统计上显着且有用的使用场景。将在该项目过程中开发的允许研究人员和从业者分析构成现代智能家居的网络物理系统的各种安全、安全和隐私属性,最终导致更安全的智能家居物联网 (IoT) 设备的部署。该项目还将生产和部署。传播有关开发安全软件的最佳实践的教育材料,重点是物联网设备,适合整合到各级教育的现有计算机知识课程中。此外,该项目将侧重于招募和留住传统上代表性不足的类别的计算机科学学生。该项目围绕三个具体目标。首先,它将开发新颖的数据收集策略,使最终用户能够以灵活的方式轻松指定例程,以及基于自然语言处理(NLP)的技术,自动处理数据并将其转换为适合建模的格式。它将介绍将例程转换为现实的家庭自动化事件序列的方法,了解其潜在属性并使用易于理解的语言建模技术对其进行建模。第三,它将结合智能家居使用模型来做出专门满足安全分析的预测。开发允许检查的工具该项目过程中开发的技术和模型将与行业合作伙伴一起验证智能家居的状态以及在实际产品上执行预测的事件序列,预计将有助于开发人员和研究人员了解智能家居的安全和隐私属性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Helion: Enabling Natural Testing of Smart Homes
Helion:实现智能家居的自然测试
An Empirical Study on the Usage of BERT Models for Code Completion
使用 BERT 模型完成代码的实证研究
  • DOI:
    10.1109/msr52588.2021.00024
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ciniselli, Matteo;Cooper, Nathan;Pascarella, Luca;Poshyvanyk, Denys;Di Penta, Massimiliano;Bavota, Gabriele
  • 通讯作者:
    Bavota, Gabriele
On Using GUI Interaction Data to Improve Text Retrieval-Based Bug Localization
关于使用 GUI 交互数据改进基于文本检索的错误定位
Understanding IoT Security from a Market-Scale Perspective
从市场规模的角度理解物联网安全
Avgust: automating usage-based test generation from videos of app executions
Avgust:根据应用程序执行视频自动生成基于使用情况的测试
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Moran其他文献

Are Inflation Expectations Rational
通胀预期是否合理
  • DOI:
    10.1016/j.jmoneco.2007.07.004
  • 发表时间:
    2008-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Andolfatto;Scott Hendry;Kevin Moran
  • 通讯作者:
    Kevin Moran
Detecting and Summarizing GUI Changes in Evolving Mobile Apps
检测和总结不断发展的移动应用程序中的 GUI 变化
Latent profile analysis of accelerometer-measured sleep, physical activity, and sedentary time and differences in health characteristics in adult women
加速度计测量的睡眠、体力活动和久坐时间的潜在特征分析以及成年女性健康特征的差异
  • DOI:
    10.1371/journal.pone.0218595
  • 发表时间:
    2019-06-27
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kelsie M. Full;Kevin Moran;J. Carlson;S. Godbole;L. Natarajan;A. Hipp;K. Glanz;Jonathan A. Mitchell;F. Laden;Peter James;J. Kerr
  • 通讯作者:
    J. Kerr
Minimizing intrusiveness in home energy measurement
最大限度地减少家庭能源测量的干扰
On Using GUI Interaction Data to Improve Text Retrieval-based Bug Localization
关于使用 GUI 交互数据改进基于文本检索的错误定位
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junayed Mahmud;Nadeeshan De Silva;Safwat Ali Khan;Seyed Hooman Mostafavi;S. H. Mansur;Oscar Chaparro;Andrian Marcus;Kevin Moran
  • 通讯作者:
    Kevin Moran

Kevin Moran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Moran', 18)}}的其他基金

Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
  • 财政年份:
    2023
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant

相似国自然基金

CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
  • 批准号:
    22361004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
  • 批准号:
    82273390
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
GPER通过“barcode”磷酸化修饰调控β-arrestin/SH3-CPs信号介导肺腺癌EGFR-TKI原发耐药的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向智能交通认知的CPS计算架构与可解释深度学习模型研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
尿素循环限速酶CPS1异常介导代谢重编程调控肝癌发生的功能机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了