Controlling Vibrationally-mediated Spin Dynamics Using Metal Nanostructure

使用金属纳米结构控制振动介导的自旋动力学

基本信息

项目摘要

With support from the Macromolecular, Supramolecular, and Nanochemistry (MSN) program in the Division of Chemistry, Professor Kenneth Knappenberger of Pennsylvania State University is combining advanced laser techniques with magnetic fields to study how the structure of metal nanoclusters and the motion of their atoms affects the spin of their electrons. Electron spin plays an important role in many emerging technologies but is difficult to study because the vibrational motion of the nanocluster atoms results in rapid relaxation of the electron spin. Professor Knappenberger and his students will address this challenge by correlating electron spin lifetimes to interactions with specific vibrational modes. An iterative process of magnetic-field laser spectroscopy and metal nanocluster synthesis will be employed to understand electron spin properties of metals. These fundamental studies could impact the advancement of quantum-based technologies, as well as lead to more efficient catalysts, new materials for reducing greenhouse gases, and the development of magnetic materials and optical switches. The project will educate graduate and undergraduate students in advanced experimental methods, as well as impact high school students by providing research opportunities and career development activities. Colloidal monolayer-protected nanoclusters allow the synthesis of structurally well-defined metals that exhibit a diverse range of tunable physical properties. This project is developing novel ligand-exchange strategies in order to understand state-selective spin-vibrational coupling in metal nanoclusters. Transient electronic spin states will be characterized using variable-temperature magneto-photoluminescence spectroscopy, as well as develop a Fourier transform magneto-photoluminescence technique for measuring spin lifetimes and spin vibrational coupling. Experiments performed on metal nanoclusters ranging in size from just a few atoms up to several hundred will show the evolution of spin properties from the molecular to metallic levels. Structural analysis will be accomplished using mass spectrometry, Raman spectroscopy, UV-Visible absorption and circular dichroism spectroscopies, as well as X-ray diffraction. The structural specificity of the metals is expected to result in accurate structure-property correlations for spin dynamics in nanoscale metals, which is necessary to accelerate progress in catalyst design and quantum information sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系高分子、超分子和纳米化学 (MSN) 项目的支持下,宾夕法尼亚州立大学的 Kenneth Knappenberger 教授将先进的激光技术与磁场相结合,研究金属纳米团簇的结构及其原子的运动如何影响它们的电子的自旋。电子自旋在许多新兴技术中发挥着重要作用,但很难研究,因为纳米团簇原子的振动运动会导致电子自旋的快速弛豫。 Knappenberger 教授和他的学生将通过将电子自旋寿命与特定振动模式的相互作用相关联来应对这一挑战。将采用磁场激光光谱和金属纳米团簇合成的迭代过程来了解金属的电子自旋特性。这些基础研究可能会影响量子技术的进步,并带来更高效的催化剂、减少温室气体排放的新材料以及磁性材料和光开关的开发。该项目将为研究生和本科生提供先进实验方法的教育,并通过提供研究机会和职业发展活动来影响高中生。 胶体单层保护的纳米团簇可以合成结构明确的金属,这些金属表现出多种可调节的物理性质。该项目正在开发新型配体交换策略,以了解金属纳米团簇中的状态选择性自旋振动耦合。将使用变温磁光致发光光谱来表征瞬态电子自旋态,并开发用于测量自旋寿命和自旋振动耦合的傅里叶变换磁光致发光技术。对尺寸从几个原子到几百个原子的金属纳米团簇进行的实验将显示自旋特性从分子水平到金属水平的演变。结构分析将使用质谱、拉曼光谱、紫外-可见吸收和圆二色光谱以及 X 射线衍射来完成。金属的结构特异性有望为纳米级金属的自旋动力学带来准确的结构-性质相关性,这对于加速催化剂设计和量子信息科学的进展是必要的。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magneto-Optical Properties of Noble Metal Nanostructures
  • DOI:
    10.1146/annurev-physchem-062322-043108
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    14.7
  • 作者:
    Foxley, Juniper;Knappenberger, Kenneth L., Jr.
  • 通讯作者:
    Knappenberger, Kenneth L., Jr.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Knappenberger其他文献

Kenneth Knappenberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Knappenberger', 18)}}的其他基金

Collaborative Research: Electronic and Geometric Structure of n-Glyme Assembled Metal Clusters
合作研究:n-甘醇二甲醚组装金属簇的电子和几何结构
  • 批准号:
    1904876
  • 财政年份:
    2019
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
Understanding the Influence of Low-Frequency Vibrations on Energy Relaxation Through Layered Nanomaterials
通过层状纳米材料了解低频振动对能量弛豫的影响
  • 批准号:
    1807999
  • 财政年份:
    2018
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
CAREER: Structure-specific Nanoscale Dynamics Studied by Nonlinear and Magneto-optical Spectroscopy
职业:通过非线性和磁光光谱研究特定结构的纳米级动力学
  • 批准号:
    1801829
  • 财政年份:
    2017
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Excited State Dynamics of Structurally Precise Metal Nanoclusters
合作研究:结构精确的金属纳米团簇的激发态动力学
  • 批准号:
    1806222
  • 财政年份:
    2017
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Excited State Dynamics of Structurally Precise Metal Nanoclusters
合作研究:结构精确的金属纳米团簇的激发态动力学
  • 批准号:
    1507550
  • 财政年份:
    2015
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
CAREER: Structure-specific Nanoscale Dynamics Studied by Nonlinear and Magneto-optical Spectroscopy
职业:通过非线性和磁光光谱研究特定结构的纳米级动力学
  • 批准号:
    1150249
  • 财政年份:
    2012
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Continuing Grant

相似国自然基金

汶川地震中一扭转现象的机理分析与转动地震动研究
  • 批准号:
    51078273
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Competition for acoustic space as a driver of species diversity in vibrationally-signaling insects
合作研究:声音空间的竞争作为振动信号昆虫物种多样性的驱动因素
  • 批准号:
    2313964
  • 财政年份:
    2023
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
Development of Medicinal Molecules Releasing Mechanism Driven by Vibrationally Excited Prussian Blue by NIR light
近红外光振动激发普鲁士蓝驱动药用分子释放机制的研究
  • 批准号:
    20K05543
  • 财政年份:
    2020
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of vibrationally excited molecules on radical generation
振动激发分子对自由基产生的影响
  • 批准号:
    17H04864
  • 财政年份:
    2017
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Development of a nitrogen fixation with vibrationally excited nitrogen plasma with gas-liquid interface
开发具有气液界面的振动激发氮等离子体固氮技术
  • 批准号:
    17H04817
  • 财政年份:
    2017
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Model studies on vibrationally-rotationally excited hydroxyl molecules in the mesosphere and rotational temperatures
中间层振动旋转激发羟基分子和旋转温度的模型研究
  • 批准号:
    392888112
  • 财政年份:
    2017
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了