Explorations in Entanglement and Knotting in Low-Dimensional Topology

低维拓扑中纠缠与打结的探索

基本信息

  • 批准号:
    2204148
  • 负责人:
  • 金额:
    $ 29.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Knots and links are closed loops in a 3-dimensional environment, possibly entwined in an interesting or complicated configuration. Knotting, linking, and entanglement occur in a broad range of physical phenomena. DNA can become linked and unlinked, or knotted and unknotted, during replication, recombination, and in other enzymatic reactions. The global topology of knotted nucleic acids and the local activity of enzymes can be modeled with objects and operations from knot theory. At the same time, the relationship of knotted structures with three and four-dimensional manifolds plays a central role in leading-edge geometry and topology, where recent mathematical developments have provided new tools with which to formally investigate knotting and linking. This project is centered on the theory and applications of knots, links, and tangles from the perspective of low-dimensional topology. Potential benefits of this project are advances in our understanding of unknotting operations, uncovering new relationships between invariants of links and three-manifolds, and providing a more robust mathematical framework for the modeling and analysis of enzymatic activities and topological structures of biopolymers. This award will increase mathematical literacy and promote broad dissemination of knowledge by supporting an online database of knot and link invariants (KnotInfo) and a lecture series at Virginia Commonwealth University that promotes emerging research topics while emphasizing achievements of underrepresented people and women.The central objects of focus in this project are invariants of knots, links, and tangles. The research uses Floer homology, Khovanov homology, and techniques in geometric topology to explore the relationships between knots, links, and three-manifolds. The first aim is to resolve fundamental questions in knot theory on crossing changes, tangle decompositions, and unknotting. New interpretations of Heegaard Floer and Khovanov-theoretic invariants of tangles in terms of immersed curves on surfaces are a major component of the methodology. The second aim is to investigate the relationship between invariants of links and three-manifolds through an exploration of Milnor's invariants and Dehn surgery. The third aim seeks to uncover new connections between knot theory and the structure of biopolymers, and to probe the broad geometric structure of Gordian-type knot graphs with methodology in geometric and low-dimensional topology and graph theory. The project includes biologically motivated questions that center on spatial theta-curves and models of entanglement in nucleic acids. The project provides avenues for graduate and undergraduate students to contribute to research in theoretical and applied knot theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结和链接在三维环境中是封闭环路,可能与有趣或复杂的配置交织在一起。打结,链接和纠缠发生在广泛的物理现象中。在复制,重组和其他酶促反应中,DNA可以链接,未连接,打结和无结。打结的核酸的全球拓扑结构和酶的局部活性可以用结理论对象和操作进行建模。同时,打结的结构与三维和四维流形的关系在领先的几何和拓扑中起着核心作用,最近的数学发展提供了新的工具,可以正式研究打结和链接。从低维拓扑的角度来看,该项目集中在结,链接和缠结的理论和应用上。该项目的潜在好处是我们对解开操作的理解,揭示了链接和三个manifolds之间不变的新关系,并为酶促活动和生物聚合物的塑性结构的建模和分析提供了更强大的数学框架。该奖项将通过支持结节和链接不变性的在线数据库(Knotinfo)和弗吉尼亚州联邦大学的讲座系列来提高数学素养,并促进知识的广泛传播,并在促进新兴的研究主题,同时强调成就不足的人和女性的成就。在这个项目中,这个项目的重点不足。该研究使用几何拓扑中的浮动同源性,霍瓦诺夫同源性和技术来探索结,链接和三个manifolds之间的关系。第一个目的是在结理论中解决有关跨越变化,纠缠分解和脱节的基本问题。 Heegaard Floer和Khovanov理论不变的新解释是在表面上浸入曲线方面的主要解释。第二个目的是通过探索Milnor的不变式和Dehn手术来调查连接与三个manifolds之间的关系。第三个目的旨在发现结理论与生物聚合物结构之间的新联系,并探测Gordian型结图的广泛几何结构,并在几何学和低维拓扑和图理论中使用方法论。该项目包括以生物学动机的问题为中心,这些问题集中在空间theta曲线和核酸中的纠缠模型。该项目为研究生和本科生提供了为理论和应用结理论研究做出贡献的途径。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估审查标准,被认为值得通过评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allison Moore其他文献

A lightness of vision: the poetics of Relation in Malian art photography
轻盈的视觉:马里艺术摄影中的关系诗学
  • DOI:
    10.1080/02533952.2014.991181
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allison Moore
  • 通讯作者:
    Allison Moore
Disparities in Emergent Versus Elective Surgery: Comparing Measures of Neighborhood Social Vulnerability.
紧急手术与择期手术的差异:社区社会脆弱性衡量标准的比较。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    H. Carmichael;Allison Moore;Lauren T. Steward;C. Velopulos
  • 通讯作者:
    C. Velopulos
Creating champions for open source rare disease drug discovery with an app
  • DOI:
    10.1016/j.ymgme.2013.12.078
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sean Ekins;Jill Wood;Lori Sames;Allison Moore;Alex M. Clark
  • 通讯作者:
    Alex M. Clark
Immigrating to Unsafe Spaces: Unique Patterns of Homicide in Immigrant Victims Compared to Native-Born Citizens.
移民到不安全的地方:与本地出生的公民相比,移民受害者的独特凶杀模式。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Joshua Abolarin;Q. W. Myers;H. Carmichael;Allison Moore;C. Velopulos
  • 通讯作者:
    C. Velopulos
Sex Differences in Violent Death During Incarceration and Legal Intervention.
监禁期间暴力死亡的性别差异和法律干预。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Dorothy R. Stearns;Allison Moore;Q. W. Myers;H. Carmichael;C. Velopulos
  • 通讯作者:
    C. Velopulos

Allison Moore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

高维纠缠态直接表征新方案研究
  • 批准号:
    12305034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
向心加速量子系统的纠缠动力学与Unruh效应
  • 批准号:
    12375047
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
一种以原子级精度构筑、操控、纠缠和读出的新型多自旋量子比特平台
  • 批准号:
    92365114
  • 批准年份:
    2023
  • 资助金额:
    68 万元
  • 项目类别:
    重大研究计划
高维量子纠缠增强的量子通信实验研究
  • 批准号:
    12374338
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
类时全息纠缠熵及其基本性质
  • 批准号:
    12375051
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了