Mapping Class Groups and Transformation Groups
映射类组和转换组
基本信息
- 批准号:2203178
- 负责人:
- 金额:$ 13.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is a multi-year research plan to develop new tools for the study of the structure of transformation groups and mapping class groups. The transformation groups such as diffeomorphism groups and homeomorphism groups of a manifold describe all symmetries of the manifold. A manifold is a space that is locally a Euclidean space. The surface of the earth, the surface of a donut and our three or four dimensional universe are all examples of manifolds. The mapping class group is a reduced form of the homeomorphism group of a manifold, in which two transformations are identified if they can be connected by a path of transformations. These objects have connections with many areas of mathematics, including geometric topology, geometric group theory, dynamics, number theory, quantum field theory, representation theory, and algebraic geometry. This project studies a number of questions about the structure of symmetries of manifolds. Broader impacts of these efforts include reading groups for graduate students. Previously, in a joint work with Kathryn Mann, the principal investigator has proved Ghys' dimension conjecture that given two manifolds M and N, if the homeomorphism group of M has a nontrivial homomorphism to the homeomorphism group of N, then the dimension of M must be less than or equal to the dimension of N. To prove this, an "Orbit Classification Theorem" is developed, which says that every orbit of such a homomorphism is homeomorphic to a cover of some configuration space of M. This finding has a potential to give more results about classifying homomorphisms between transformation groups. Since we have figured out all orbits, now the challenge is to understand how to glue those orbits inside the manifold N. Another line of work studies the projection map from the transformation group to the mapping class group. In particular, we ask which subgroups of the mapping class group have sections under the projection, where the existence of sections implies that the surface bundle that the subgroup determines will admit a flat structure. In previous work on this subgroup question the principal investigator has proved several results using techniques of "hidden torsion" and rotation number. More tools will be developed specifically to attack this question. Another direction to explore concerns diffeomorphism groups of high dimensional manifolds, specifically, whether there is an example of an infinite torsion group that acts faithfully on some manifold.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目是一项为期多年的研究计划,旨在开发新工具,用于研究转型组和映射课程组的结构。诸如多态性群体和同构群等转化组描述了流形的所有对称性。歧管是局部欧几里得空间的空间。地球表面,甜甜圈的表面和我们的三个或四个维度宇宙都是歧管的例子。映射类组是歧管同态组的降低形式,在该组中,如果可以通过转换路径连接两个转换,则可以确定两个转换。 这些对象与数学的许多领域都有联系,包括几何拓扑,几何群体理论,动力学,数理论,量子场理论,表示理论和代数几何形状。该项目研究了许多有关歧管对称性结构的问题。 这些努力的更广泛的影响包括为研究生阅读小组。以前,在与凯瑟琳·曼恩(Kathryn Mann)的共同合作中,主要研究者证明了ghys的尺寸构想,如果m和n同构的同构群具有非平凡的同构同性形态,则对n的同型同构群体的同态构态,那么m的维度必须小于或等于n。同构对M的某些配置空间的封面是同构的,这一发现有可能在转换组之间对同态分类产生更多结果。由于我们已经弄清楚了所有轨道,因此现在的挑战是了解如何将这些轨道粘合在歧管N中。另一个工作线研究了从转换组到映射类组的投影图。特别是,我们询问映射类组的哪些亚组在投影下有部分,其中部分的存在意味着子组确定的表面束将允许平坦的结构。在此亚组问题的先前工作中,主要研究者使用“隐藏扭转”和旋转编号证明了几个结果。将专门开发更多工具来攻击这个问题。探索问题的另一个方向是,高维流形的差异性群体,具体是,是否有一个无限扭转组的例子,该组是否忠实于某种歧管,这反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来通过评估来支持的,这是值得的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Chen其他文献
A collective review of syndrome of transient headache and neurological deficits with cerebrospinal fluid lymphocytosis
脑脊液淋巴细胞增多性短暂性头痛和神经功能缺损综合征的集体综述
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianheng Wu;Deng Li;Hua Li;Siyan Chen;Lei Chen - 通讯作者:
Lei Chen
Cloning and Characterization of an mRNA Encoding F1-ATPase Beta-Subunit Abundant in Epithelial Cells of Mantle and Gill of Pearl Oyster, Pinctada fucata
珠母贝外套膜和鳃上皮细胞中丰富的编码 F1-ATPase β 亚基的 mRNA 的克隆和表征
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Liang Liu;L. Xie;Xunhao Xiong;Weimin Fan;Lei Chen;Rongqing Zhang - 通讯作者:
Rongqing Zhang
An empirical study of orphan DNS servers in the internet
互联网中孤儿 DNS 服务器的实证研究
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Andrew J. Kalafut;Minaxi Gupta;Christopher Cole;Lei Chen;N. Myers - 通讯作者:
N. Myers
[Beneficial effect of periodontal therapy on insulin resistance and lipid metabolism in obese rats with periodontitis].
牙周治疗对肥胖牙周炎大鼠胰岛素抵抗和脂质代谢的有益作用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Qiaoxue Chai;S. Zhong;J. Ni;Lei Chen;Lei Zhou;Jincai Zhang - 通讯作者:
Jincai Zhang
Responses to antipsychotic therapy among patients with schizophrenia or schizoaffective disorder and either predominant or prominent negative symptoms
具有主要或显着阴性症状的精神分裂症或分裂情感障碍患者对抗精神病药物治疗的反应
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.5
- 作者:
V. Stauffer;Guo;B. Kinon;H. Ascher;Lei Chen;P. Feldman;R. Conley - 通讯作者:
R. Conley
Lei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Chen', 18)}}的其他基金
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
- 批准号:
2339110 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Continuing Grant
MRI: Track 1 Acquisition of an Accelerating Rate Calorimeter System for Multidisciplinary Research, Education and Outreach
MRI:轨道 1 采购加速量热计系统,用于多学科研究、教育和推广
- 批准号:
2320171 - 财政年份:2023
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
- 批准号:
2323475 - 财政年份:2023
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Collaborative Research: Engineering Gradient Nanostructured Metals by Multi-Pass Plastic Wave Deformation
合作研究:通过多通道塑性波变形工程梯度纳米结构金属
- 批准号:
2102093 - 财政年份:2021
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Mapping Class Groups and Transformation Groups
映射类组和转换组
- 批准号:
2005409 - 财政年份:2020
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Collaborative Research: Tuning Properties of Bi-Continuous Piezoelectric Composites via Additive Manufacturing
合作研究:通过增材制造调整双连续压电复合材料的性能
- 批准号:
2020527 - 财政年份:2019
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Collaborative Research: Tuning Properties of Bi-Continuous Piezoelectric Composites via Additive Manufacturing
合作研究:通过增材制造调整双连续压电复合材料的性能
- 批准号:
1826100 - 财政年份:2018
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of chalcogenide-doped high capacity lithium-ion battery anode materials during cycling using in situ imaging
合作研究:利用原位成像研究硫属化物掺杂高容量锂离子电池负极材料在循环过程中的动力学
- 批准号:
1604104 - 财政年份:2016
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
相似国自然基金
Class Ⅲ型过氧化物酶基因OsPOX8.1调控水稻抗褐飞虱的分子机制研究
- 批准号:32301918
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
- 批准号:32300291
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PAR1介导的MHC class I表达探讨血府逐瘀汤逆转肺癌免疫逃逸的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PAR1介导的MHC class I表达探讨血府逐瘀汤逆转肺癌免疫逃逸的作用及机制研究
- 批准号:82204844
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
无细胞生物合成S-腺苷甲硫氨酸自由基依赖的Class B甲基转移酶的系统构筑及应用研究
- 批准号:32171427
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
- 批准号:
2339110 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Continuing Grant
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
- 批准号:
2236705 - 财政年份:2023
- 资助金额:
$ 13.28万 - 项目类别:
Continuing Grant
LEAPS-MPS: Braids and Mapping Class Groups: Investigating Left-orders, Twisting, and Positivity
LEAPS-MPS:辫子和映射类组:研究左序、扭曲和正性
- 批准号:
2213451 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Mapping Class Groups, Branched Covers, and Rational Maps
映射类组、分支覆盖和有理映射
- 批准号:
2108572 - 财政年份:2021
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant