New frontiers in synthesis of high-entropy transition metal borides enabled by microwave-induced plasma

微波诱导等离子体合成高熵过渡金属硼化物的新前沿

基本信息

  • 批准号:
    2203112
  • 负责人:
  • 金额:
    $ 28.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThe significance of this project is that it addresses the need for advanced ceramics as a key enabling technology for many applications in aerospace, defense, power generation, and processing industries having significant national impact. The study of materials designed for operation under harsh conditions is essential to meet a range of challenges—from creating better turbines, reactors, and batteries to developing future energy systems. The experimental and computation components of this project help support the goals of the National Materials Genome Initiative (MGI) in the effort to discover, manufacture, and deploy advanced materials faster and with less cost than ever before. The class of materials known as high-entropy ceramics developed in this project extends the range of high temperatures and resistance to rusting as needed for advanced material systems, such as hypersonic vehicles. The investigations involve understanding how these new materials form, along with their mechanical and rust resistance. The materials are processed using a highly efficient technique based on a state of matter known as plasma; a processing approach not yet explored in this field. Both experimental and computational methodologies are employed to provide new knowledge about how these materials can be synthesized, characterized, and modeled. The community are engaged about the wonders of plasma technology through involvement with a local science center, with aim for a broad viewing audience including the general public and K-12 students.TECHNICAL SUMMARYThis project investigates a novel approach for synthesis of high-entropy transition metal borides enabled by microwave-induced plasma. Compared to conventional processes that rely primarily on convection, the advantages of this approach include: enhanced diffusion, reduced energy consumption, very rapid heating rates and considerably reduced processing times, decreased sintering temperatures, and improved physical and mechanical properties. The plasma discharge is highly efficient in promoting microwave heating and chemical reactions via highly active species such as electrons, ions and radicals. This synthesis route is yet unexplored for high-entropy ceramics and presents opportunity to study the mechanisms contributing to formation of this relatively new class of materials. The kinetics and reaction pathway leading to complete phase transformation via this unique approach is investigated, along with characterization of structure, hardness and oxidation resistance. The computational effort guide component selection by computing entropy forming ability with partial occupation method, predict oxidation resistance using CalPhad to couple thermodynamics with phase diagrams, and model mechanical properties with special quasi-random structures. Outcomes from this project include: new understanding of how microwave-induced plasmas affect and enhance reaction pathways/kinetics toward high-entropy boride formation and development of new models for mechanical and oxidation resistance properties along with validation from experiment. Community outreach in this project focuses on the wonders of plasma technology for a broad viewing audience including the general public and K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该项目的意义在于,它解决了对航空航天,国防,发电和加工行业的许多应用程序的关键促进技术的需求,具有重大的国家影响力。对在Harmsh条件下设计的材料的研究对于应对一系列挑战至关重要,从创建更好的涡轮机,反应堆和电池到开发未来的能源系统。该项目的实验和计算组成部分有助于支持国家材料基因组计划(MGI)的目标,以努力发现,制造和部署高级材料的成本比以往任何时候都更快。该项目中开发的称为高渗透陶瓷的材料类别扩展了高温和对高级材料系统(例如高超音速车辆)所需生锈的耐药性。调查涉及了解这些新材料如何形成以及它们的机械和锈蚀。这些材料是使用基于称为血浆的物质状态的高效技术来处理的。该领域尚未探讨一种处理方法。实验方法和计算方法均被用于提供有关如何合成,表征和建模这些材料的新知识。通过参与当地科学中心的参与,社区吸引了血浆技术的奇观,其目的是吸引包括公众和K-12学生在内的广泛观看受众。技术总结研究调查了一种新的方法来调查一种新颖的方法,用于合成高质量诱导的plasma.com的高素质过渡金属硼的综合方法,这些方法依赖于常规的构建:依赖于常规的构建:依靠促进的构建依赖于促进的​​构建:依赖于常规的构建:依赖于促进的​​构建,依赖于促进的​​构建,依赖于众所周知,依赖于众所周知,依靠构建的范围:消费,非常快速的加热速率以及考虑减少加工时间,发展烧结的温度以及改善的物理和机械性能。血浆放电在通过电子,离子和自由基等高活性物种(例如高活性物种)促进微波加热和化学反应方面高度有效。对于高渗透陶瓷而言,这种合成途径仍然是出乎意料的,并提供了研究有助于形成这种相对较新材料的机制的机会。研究了通过这种独特方法的动力学和反应途径,以及结构,硬度和氧化抗性的表征。计算工作努力通过使用部分职业方法计算熵形成能力来指导组件选择,使用calphad预测抗氧化能力,以将calphad与相图相对,以及具有特殊准随机结构的机械性能。该项目的结果包括:对微波诱导的等离子体如何影响和增强反应途径/动力学对高渗透bower形成的新理解,以及开发用于机械和氧化抗性特性的新模型以及实验验证。该项目中的社区宣传重点关注等离子体技术的奇观,包括公众和K-12学生在内的广泛观众。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准,被视为通过评估来获得珍贵的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shane Catledge其他文献

Shane Catledge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shane Catledge', 18)}}的其他基金

MRI: Acquisition of a spark plasma sintering system for engineering advanced materials and composites for use in extreme environments
MRI:采购放电等离子烧结系统,用于设计用于极端环境的先进材料和复合材料
  • 批准号:
    2116564
  • 财政年份:
    2021
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Standard Grant

相似国自然基金

中缅边境恶性疟原虫对双氢青蒿素-哌喹的抗药性研究及该地区恶性疟替代治疗方案探索
  • 批准号:
    32360118
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
碳边境调节机制对我国区域经济、社会和环境协调发展的影响——考虑企业所有制异质性的研究
  • 批准号:
    72303240
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
图们江流域中国边境地区候鸟-蜱-蜱携带病原流行病学数据库的建立及候鸟对蜱携带病原体多态性影响机制研究
  • 批准号:
    32360886
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于电波传播先验知识的边境区域无线电发射源定位及应用研究
  • 批准号:
    62361055
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
西藏边境城镇人居单元的传承机制及适宜性营造模式研究
  • 批准号:
    52308035
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New Frontiers in Multifunctional Materials: Design, Synthesis and Nanostructure-Property Relations
多功能材料的新前沿:设计、合成和纳米结构-性能关系
  • 批准号:
    RGPIN-2017-06915
  • 财政年份:
    2022
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Multifunctional Materials: Design, Synthesis and Nanostructure-Property Relations
多功能材料的新前沿:设计、合成和纳米结构-性能关系
  • 批准号:
    RGPIN-2017-06915
  • 财政年份:
    2021
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Synthesis of Main Group Systems with Novel Photophysical Properties
具有新颖光物理性质的主族体系合成新领域
  • 批准号:
    1955845
  • 财政年份:
    2020
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Standard Grant
New Frontiers in Multifunctional Materials: Design, Synthesis and Nanostructure-Property Relations
多功能材料的新前沿:设计、合成和纳米结构-性能关系
  • 批准号:
    RGPIN-2017-06915
  • 财政年份:
    2020
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Multifunctional Materials: Design, Synthesis and Nanostructure-Property Relations
多功能材料的新前沿:设计、合成和纳米结构-性能关系
  • 批准号:
    RGPIN-2017-06915
  • 财政年份:
    2019
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了