Collaborative Research: CPS: Medium: RUI: Cooperative AI Inference in Vehicular Edge Networks for Advanced Driver-Assistance Systems
协作研究:CPS:中:RUI:高级驾驶员辅助系统车辆边缘网络中的协作人工智能推理
基本信息
- 批准号:2128341
- 负责人:
- 金额:$ 32.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence (AI) has shown superior performance in enhancing driving safety in advanced driver-assistance systems (ADAS). State-of-the-art deep neural networks (DNNs) achieve high accuracy at the expense of increased model complexity, which raises the computation burden of onboard processing units of vehicles for ADAS inference tasks. The primary goal of this project is to develop innovative collaborative AI inference strategies with the emerging edge computing paradigm. The strategies can adaptively adjust cooperative inference techniques for best utilizing available computation and communication resources and ultimately enable high-accuracy and real-time inference. The project will inspire greater collaborations between experts in wireless communication, edge computing, computer vision, autonomous driving testbed development, and automotive manufacturing, and facilitate AI applications in a variety of IoT systems. The educational testbed developed from this project can be integrated into courses to provide hands-on experiences. This project will benefit undergraduate, master, and Ph.D. programs and increase under-represented groups’ engagement by leveraging the existing diversity-related outreach efforts.A multi-disciplinary team with complementary expertise from Rowan University, Temple University, Stony Brook University, and Kettering University is assembled to pursue a coordinated study of collaborative AI inference. The PIs explore integrative research to enable deep learning technologies in resource-constrained ADAS for high-accuracy and real-time inference. Theory-wise, the PIs plan to take advantage of the observation that DNNs can be decomposed into a set of fine-grained components to allow distributed AI inference on both the vehicle and edge server sides for inference acceleration. Application-wise, the PIs plan to design novel DNN models which are optimized for the cooperative AI inference paradigm. Testbed-wise, a vehicle edge computing platform with V2X communication and edge computing capability will be developed at Kettering University GM Mobility Research Center. The cooperative AI inference system will be implemented, and the research findings will be validated on realistic vehicular edge computing environments thoroughly. The data, software, and educational testbeds developed from this project will be widely disseminated. Domain experts in autonomous driving testbed development, intelligent transportation systems, and automotive manufacturing will be engaged in project-related issues to ensure relevant challenges in this project are impactful for real-world applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 在增强高级驾驶员辅助系统 (ADAS) 的驾驶安全性方面表现出了卓越的性能,最先进的深度神经网络 (DNN) 以增加模型复杂性为代价实现了高精度,从而提高了驾驶安全性。该项目的主要目标是利用新兴的边缘计算范式开发创新的协作人工智能推理策略,这些策略可以自适应地调整协作推理技术,以充分利用可用的计算和通信资源。最终该项目将激发无线通信、边缘计算、计算机视觉、自动驾驶测试台开发和汽车制造领域专家之间的更大合作,并促进人工智能在各种物联网系统中的应用。该项目开发的测试平台可以集成到课程中,以提供实践经验,该项目将使本科生、硕士和博士课程受益,并通过利用现有的与多样性相关的外展工作来提高代表性不足的群体的参与度。具有互补专业知识的多学科团队罗文大学、天普大学、石溪大学和凯特林大学联合开展协作人工智能推理研究,探索综合研究,以在资源有限的 ADAS 中实现高精度和实时推理。从理论上讲,PI 计划利用 DNN 可以分解为一组细粒度组件的观察结果,以允许在车辆和边缘服务器端进行分布式 AI 推理,以实现推理加速。在应用方面,PI 计划设计针对协作人工智能推理范例进行优化的新型 DNN 模型;在测试平台方面,凯特林大学通用汽车移动合作研究中心将开发具有 V2X 通信和边缘计算功能的车辆边缘计算平台。人工智能推理系统将得到实施,研究成果将在现实的车辆边缘计算环境中得到彻底验证,该项目开发的数据、软件和教育测试平台将广泛传播给自动驾驶测试平台开发领域的专家。智能交通系统和汽车制造将参与项目相关问题,以确保该项目中的相关挑战对实际应用产生影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shen Shyang Ho其他文献
Shen Shyang Ho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shen Shyang Ho', 18)}}的其他基金
New Approaches for Dynamic Graph Anomaly Detection, Prediction, and Explanation
动态图异常检测、预测和解释的新方法
- 批准号:
2213658 - 财政年份:2022
- 资助金额:
$ 32.95万 - 项目类别:
Standard Grant
ATD: New Approaches for Analyzing Spatiotemporal Data for Anomalies
ATD:分析时空数据异常的新方法
- 批准号:
1830489 - 财政年份:2018
- 资助金额:
$ 32.95万 - 项目类别:
Continuing Grant
相似国自然基金
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
- 批准号:22361004
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
- 批准号:82273390
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
GPER通过“barcode”磷酸化修饰调控β-arrestin/SH3-CPs信号介导肺腺癌EGFR-TKI原发耐药的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能交通认知的CPS计算架构与可解释深度学习模型研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
尿素循环限速酶CPS1异常介导代谢重编程调控肝癌发生的功能机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 32.95万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 32.95万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 32.95万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 32.95万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 32.95万 - 项目类别:
Standard Grant