Collaborative Research: Inferring the impacts of closely-related species on phenotypic evolution
合作研究:推断密切相关物种对表型进化的影响
基本信息
- 批准号:2154898
- 负责人:
- 金额:$ 51.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In a classic example of natural selection on islands, the remarkable differences among the bills of Darwin’s finches allow these species to co-exist because they eat very different types of food. The same processes may also be important in shaping evolution in many other organisms, but their effects can be difficult to detect without the clear geographic boundaries of islands and the strikingly different body forms of Darwin’s finches. This project focuses on Sceloporus lizards, a large group of species that often co-exist, and that are abundant throughout Mexico and the southwestern United States. The researchers will gather detailed measurements of body shape and environmental features, and develop new statistical approaches to identify body and habitat types distinct from generalist, mainland species. They will then test whether species that co-exist in the same geographic areas differ from each other in body form and ecology, and reconstruct the ancient history of co-existing species with geographic precision. The project emphasizes international collaboration (US and Mexico) and community science practices. It will also embed the research in formal courses taught at three institutions, and disseminate results through museum exhibits and other forms of public outreach. Closely related taxa that live in geographic proximity (i.e., sympatric congeners) impose a potentially widespread and under-recognized evolutionary phenomenon. This project will gather new data from CT scans and from geometric morphometric analyses of museum specimens, conduct lizard field surveys of 500 sites in Mexico and the southwestern United States, and develop new phylogeographic tests of whether Sceloporus lizards tend to co-exist with closely related taxa. In addition, the researchers will combine phylogenetic, climate, and fossil information to reconstruct the detailed evolutionary and geographic history of Sceloporus species assemblages and their morphologies, testing hypotheses about the processes by which interspecies interactions lead to species turnover and diversification. These analyses will test hypotheses about the importance of foraging, habitat use, and parity as drivers of interspecific interactions, ask whether sympatric congeners have imposed similar selective pressures in repeated evolutionary episodes, and test for links between the biodiversity of sympatric species assemblages (e.g., species richness, phylogenetic diversity) and landscape characteristics (e.g., habitat heterogeneity). The project will also contribute to future studies by adding new data and R scripts for those who want to conduct similar analyses with other taxa.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在岛上自然选择的经典示例中,达尔文罚款法案之间的显着差异使这些物种可以共存,因为它们吃了非常不同的食物。相同的过程对于塑造许多其他生物的进化也可能很重要,但是如果没有岛屿的明确地理边界以及达尔文罚款的明显不同的身体形式,它们的影响可能很难检测到。该项目的重点是sceloporus蜥蜴,这是一大批经常共存的物种,并且在墨西哥和美国西南部都很丰富。研究人员将收集对身体形状和环境特征的详细测量,并开发新的统计方法,以识别与通才,大陆物种不同的身体和栖息地类型。然后,他们将测试在相同地理区域共存的物种是否在身体形式和生态学上彼此不同,并重建具有地理精度的共存物种的古代历史。该项目强调国际合作(美国和墨西哥)和社区科学实践。它还将将研究嵌入在三个机构教授的正式课程中,并通过博物馆展览和其他形式的公共宣传来传播结果。生活在地理邻近(即同胞同源物)中的紧密相关的分类单元施加了一种潜在的广泛且被识别的进化现象。该项目将从CT扫描和博物馆标本的几何形态分析中收集新数据,对墨西哥和美国西南部的500个地点进行蜥蜴现场调查,并开发有关Sceloporus Lizards是否倾向于与分类较密切相关的新植物地理测试。此外,研究人员将结合系统发育,气候和化石信息,以重建sceloporus物种组合及其形态的详细进化和地理历史,并测试有关杂交相互作用导致物种流失和多样化的过程的假设。这些分析将测试关于觅食,栖息地使用和均等作为种间相互作用的驱动因素的重要性的假设异质性)。该项目还将通过为那些希望与其他分类单元进行类似分析的人添加新数据和R脚本来为未来的研究做出贡献。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估审查标准来评估,认为这是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Lawing其他文献
Michelle Lawing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Lawing', 18)}}的其他基金
NSFDEB-NERC: Collaborative Research: Vertebrate functional traits as indicators of ecosystem function through deep and shallow time
NSFDEB-NERC:合作研究:脊椎动物功能特征作为深浅时间生态系统功能的指标
- 批准号:
2124836 - 财政年份:2021
- 资助金额:
$ 51.28万 - 项目类别:
Standard Grant
相似国自然基金
面向癌症驱动因子识别及其调控作用预测的因果推断方法研究
- 批准号:62372210
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
时序数据驱动的预期因果推断经济网络动力学感知重构方法研究
- 批准号:72371229
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于因果推断的无偏深度语义匹配算法研究
- 批准号:62302345
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无对照的合成控制法评价群体干预措施效果的因果推断方法研究
- 批准号:82304243
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CISE-MSI: Active and Passive Internet Measurements for Inferring IoT Maliciousness at Scale
合作研究:CISE-MSI:用于大规模推断物联网恶意行为的主动和被动互联网测量
- 批准号:
2219772 - 财政年份:2022
- 资助金额:
$ 51.28万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: Active and Passive Internet Measurements for Inferring IoT Maliciousness at Scale
合作研究:CISE-MSI:用于大规模推断物联网恶意行为的主动和被动互联网测量
- 批准号:
2219773 - 财政年份:2022
- 资助金额:
$ 51.28万 - 项目类别:
Standard Grant
Collaborative Research: Inferring The In Situ Micro-Mechanics of Embedded Fiber Networks by Leveraging Limited Imaging Data
合作研究:利用有限的成像数据推断嵌入式光纤网络的原位微观力学
- 批准号:
2127864 - 财政年份:2022
- 资助金额:
$ 51.28万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: Active and Passive Internet Measurements for Inferring IoT Maliciousness at Scale
合作研究:CISE-MSI:用于大规模推断物联网恶意行为的主动和被动互联网测量
- 批准号:
2219771 - 财政年份:2022
- 资助金额:
$ 51.28万 - 项目类别:
Standard Grant
Collaborative Research: Inferring the impacts of closely-related species on phenotypic evolution
合作研究:推断密切相关物种对表型进化的影响
- 批准号:
2154897 - 财政年份:2022
- 资助金额:
$ 51.28万 - 项目类别:
Standard Grant