Collaborative Research: SaTC: CORE: Small: Machine Learning for Cybersecurity: Robustness Against Concept Drift
协作研究:SaTC:核心:小型:网络安全机器学习:针对概念漂移的稳健性
基本信息
- 批准号:2154874
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A promising direction for cybersecurity is to use machine learning to detect threats and attacks. For instance, machine learning is currently used to detect computer viruses, malware, malicious mobile applications, spam email, and network intrusions. However, one fundamental challenge for using machine learning in this way is the problem of concept drift. Concept drift refers to the problem that threats change over time, and normal benign behavior changes over time, and as a result, machine learning algorithms rapidly degrade and become less effective as time passes. Empirically, concept drift is one of the main challenges that make it hard to apply machine learning more broadly in cybersecurity. This project will develop new methods tailored to the cybersecurity domain for addressing concept drift, and it will advance the state of knowledge on robustness against concept drift in cybersecurity. The project has the potential to improve cybersecurity protections for everyday people, including improving antivirus software, phishing detectors, fraud/scam detection, and more, thereby making the Internet safer for everyone.The team's approach is based on an understanding of the fundamental drivers of concept drift, including both gradual drift and emergence of entirely new types of threats. Threats can often be categorized into multiple categories. For instance, malware falls into many different "malware families". Each category may experience concept drift at a different rate. This provides an opportunity for new methods that take advantage of such differences across categories. To address the problem of categories that are experiencing rapid concept drift, the team plans to develop techniques to detect which categories are suffering from concept drift to the greatest degree and then select samples from those categories for human analysts to evaluate. For new types of threats, the team plans to develop techniques to identify samples from new categories so they can be submitted for human analysis. For categories that are experiencing gradual but sustained concept drift, the team plans to explore use of semi-supervised learning and pseudo labels to help the machine learning algorithm adapt to these changes in the data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络安全的一个有前途的方向是使用机器学习来检测威胁和攻击。 例如,机器学习目前用于检测计算机病毒、恶意软件、恶意移动应用程序、垃圾邮件和网络入侵。 然而,以这种方式使用机器学习的一个基本挑战是概念漂移问题。 概念漂移是指威胁随着时间的推移而变化,正常的良性行为随着时间的推移而变化,导致机器学习算法随着时间的推移而迅速退化并变得不太有效的问题。 根据经验,概念漂移是导致机器学习难以在网络安全中更广泛应用的主要挑战之一。 该项目将开发适合网络安全领域的新方法来解决概念漂移问题,并将提高网络安全中针对概念漂移的鲁棒性知识水平。 该项目有潜力改善日常生活中的网络安全保护,包括改进防病毒软件、网络钓鱼检测器、欺诈/诈骗检测等,从而使每个人的互联网更加安全。该团队的方法基于对基本驱动因素的理解。概念漂移,包括逐渐漂移和全新类型威胁的出现。 威胁通常可以分为多个类别。 例如,恶意软件属于许多不同的“恶意软件家族”。 每个类别可能会以不同的速度经历概念漂移。 这为利用跨类别差异的新方法提供了机会。 为了解决正在经历快速概念漂移的类别问题,该团队计划开发技术来检测哪些类别遭受最大程度的概念漂移,然后从这些类别中选择样本供人类分析师进行评估。对于新类型的威胁,该团队计划开发技术来识别新类别的样本,以便将它们提交进行人工分析。对于正在经历逐渐但持续的概念漂移的类别,团队计划探索使用半监督学习和伪标签来帮助机器学习算法适应数据中的这些变化。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suman Jana其他文献
Accurate Data Race Prediction in the Linux Kernel through Sparse Fourier Learning
通过稀疏傅里叶学习在 Linux 内核中准确预测数据竞争
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gabriel Ryan;Burcu Cetin;Yongwhan Lim;Suman Jana - 通讯作者:
Suman Jana
Mathematical modeling of impulse island controller to safely store the energy from high‐voltage lightning impulse
安全存储高压雷电冲击能量的冲击岛控制器数学模型
- DOI:
10.1002/est2.325 - 发表时间:
2022 - 期刊:
- 影响因子:3.2
- 作者:
Suman Jana;P. Biswas;Chiranjit Sain - 通讯作者:
Chiranjit Sain
Analysis of Realtime Inverter for Kite Energy System Using TI -C2000 Microcontroller
采用TI -C2000微控制器的风筝能源系统实时逆变器分析
- DOI:
10.1109/epetsg.2018.8658970 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Castelino;Suman Jana;P. Biswas - 通讯作者:
P. Biswas
Integration of supercapacitive storage in renewable energy system to compare the response of two level and five level inverter with RL type load
可再生能源系统中超级电容存储的集成比较二级和五级逆变器与RL型负载的响应
- DOI:
10.1063/1.5032071 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Suman Jana;P. Biswas;Upama Das - 通讯作者:
Upama Das
Suman Jana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suman Jana', 18)}}的其他基金
CAREER: Efficient Fuzzing with Neural Program Smoothing
职业:通过神经程序平滑进行高效模糊测试
- 批准号:
1845995 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative: Towards Trustworthy Deep Neural Network Based AI: A Systems Approach
SaTC:核心:媒介:协作:迈向基于可信深度神经网络的人工智能:一种系统方法
- 批准号:
1801426 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
- 批准号:
1617670 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于FRET受体上升时间的单分子高精度测量方法研究
- 批准号:22304184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
- 批准号:52373161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
- 批准号:82304416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
- 批准号:82373255
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
- 批准号:82300623
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant