Collaborative Research: Multi-configurational Methods for Charge Transport in Nanoscale Electronics

合作研究:纳米电子中电荷传输的多配置方法

基本信息

  • 批准号:
    2154833
  • 负责人:
  • 金额:
    $ 8.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Professors Erik Hoy of Rowan University and Andrew Sand of Butler University are supported by an award from the Chemical Theory, Models and Computational Methods (CTMC) program in the Division of Chemistry to characterize novel charge transport processes at the quantum level. Understanding charge transport is vital to pursuing new developments in areas considered critically important to long-term national economic success including electronics, solar energy, and materials development. Nanoscale organic electronic devices display unique charge transport properties that can be used to design improved electronic devices (ex. transistors, resistors), but it is challenging to describe charge transport in many of these devices using existing computational methods. The joint Rowan and Butler team will develop new computational tools for generating the charge transport data needed to design the next generation of electronic devices based on non-classical charge transport effects. The developed computational tools will be incorporated into the OpenMolcas software package, which is widely used in both educational and research efforts. Both Butler University and Rowan University have strong commitments to undergraduate education, and a core educational outcome of this project is the development of computationally-engaged undergraduate students fit for either academic or industry positions. Through student recruitment partnerships with mentorship programs and local community colleges, this project provides a pathway into research for students from non-traditional backgrounds and underrepresented groups in the computational sciences.Nanoscale organic electronic devices that operate at the single-molecule level are a key experimental platform for enhancing the scientific community’s understanding of charge transport at the quantum level. Created by combining single organic molecules with metal or carbon-based electrodes, single-molecule devices hold the potential to be the foundation for the next generation of transistors, resistors, and switches for nanoscale electronics. Large gaps remain in our theoretical understanding of non-classical charge transport effects in nanoscale electronics such as the reversal of the expected electrical conductance decay with increasing molecular length. A key reason for this is the limited treatment of electron-electron interactions (electron correlation) by existing transport methods particularly strong/multireference correlation. To resolve this, the Hoy/Sand research team will develop a fully-quantum family of multiconfigurational charge transport methods based on multiconfiguration pair density functional theory (MC-PDFT) combined with the non-equilibrium Green’s function formalism (NEGF). Key objectives include the development of new MC-PDFT-based effective Hamiltonians and self-consistent optimization schemes for multiconfigurational Green’s function transport theories. The integration of these developments within an open-source modular Python framework allows for the characterization of multireference correlation effects in quantum transport phenomena. Using these NEGF-MCPDFT methodologies, the team will investigate including reversed conductance decay, Coulomb blockades, and Kondo Resonances to enhance the scientific community’s understanding of quantum charge transport phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罗恩大学的埃里克·霍伊(Erik Hoy)教授和巴特勒大学的安德鲁·桑德(Andrew Sand)得到了化学理论,模型和计算方法(CTMC)计划的奖励,以表征量子水平上新型充电运输过程的新型电荷运输过程。了解冲锋的运输对于在人们对长期国家经济成功至关重要的领域进行新的发展至关重要,包括电子,太阳能和材料开发。纳米级有机电子设备显示出独特的电荷传输属性,可用于设计改进的电子设备(例如,晶体管,电阻器),但要使用现有的计算方法在许多此类设备中描述电荷传输是挑战。 Rowan和Butler团队将开发新的计算工具,以生成基于非经典电荷传输效果设计下一代电子设备所需的电荷传输数据。开发的计算工具将被合并到OpenMolcas软件包中,该软件包广泛用于教育和研究工作。巴特勒大学和罗文大学都对本科教育都有坚定的承诺,该项目的核心教育结果是开发计算参与的本科生适合学术或行业职位。通过学生招聘培训计划和本地社区学院的合作伙伴关系,该项目为来自非传统背景的学生和计算科学中代表性不足的群体提供了研究。纳米级有机电子设备在单人分子级别运行的纳米级有机电子设备是一个关键的实验平台,是对电荷级别的理解量的关键实验平台。通过将单个有机分子与金属或碳基电子产品相结合而创建的单分子设备有可能成为下一代晶体管,电阻和纳米级电子开关的基础。我们对纳米级电子中非经典电荷转运效应的理论理解中仍然存在很大的差距,例如随着分子长度的增加,预期的电导衰减的逆转。造成这种情况的一个关键原因是通过现有的运输方法特别强/多方次相关性对电子电子相互作用(电子相关)的有限处理。为了解决这一问题,Hoy/Sand Research团队将基于多构型配对密度函数理论(MC-PDFT)与非平衡绿色功能形式(NEGF)共同开发完全量化的多构型电荷传输方法。关键对象包括开发新的基于MC-PDFT的有效哈密顿量和针对多种配置Green的功能运输理论的自洽优化方案。这些发展在开源模块化python框架中的整合允许表征量子传输现象中的多方面相关效应。使用这些NEGF-MCPDFT方法,该团队将调查包括反向电导衰减,库仑封锁和Kondo共鸣,以增强科学界对量子电荷运输现象的理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的审查标准评估来诚实地获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

相似国自然基金

车联网中基于多智能体系统的协同优化机制研究
  • 批准号:
    62302062
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于多算法组合协作的城市空中交通建模分析与优化管控研究
  • 批准号:
    72301278
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
载人飞行器-地形共融多平台协作起降机构设计及容错控制研究
  • 批准号:
    52305039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
    $ 8.02万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
    $ 8.02万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
    $ 8.02万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
    $ 8.02万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
    $ 8.02万
  • 项目类别:
    Standard Grant
    Standard Grant