Collaborative Research: Multi-configurational Methods for Charge Transport in Nanoscale Electronics

合作研究:纳米电子中电荷传输的多配置方法

基本信息

  • 批准号:
    2154833
  • 负责人:
  • 金额:
    $ 8.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Professors Erik Hoy of Rowan University and Andrew Sand of Butler University are supported by an award from the Chemical Theory, Models and Computational Methods (CTMC) program in the Division of Chemistry to characterize novel charge transport processes at the quantum level. Understanding charge transport is vital to pursuing new developments in areas considered critically important to long-term national economic success including electronics, solar energy, and materials development. Nanoscale organic electronic devices display unique charge transport properties that can be used to design improved electronic devices (ex. transistors, resistors), but it is challenging to describe charge transport in many of these devices using existing computational methods. The joint Rowan and Butler team will develop new computational tools for generating the charge transport data needed to design the next generation of electronic devices based on non-classical charge transport effects. The developed computational tools will be incorporated into the OpenMolcas software package, which is widely used in both educational and research efforts. Both Butler University and Rowan University have strong commitments to undergraduate education, and a core educational outcome of this project is the development of computationally-engaged undergraduate students fit for either academic or industry positions. Through student recruitment partnerships with mentorship programs and local community colleges, this project provides a pathway into research for students from non-traditional backgrounds and underrepresented groups in the computational sciences.Nanoscale organic electronic devices that operate at the single-molecule level are a key experimental platform for enhancing the scientific community’s understanding of charge transport at the quantum level. Created by combining single organic molecules with metal or carbon-based electrodes, single-molecule devices hold the potential to be the foundation for the next generation of transistors, resistors, and switches for nanoscale electronics. Large gaps remain in our theoretical understanding of non-classical charge transport effects in nanoscale electronics such as the reversal of the expected electrical conductance decay with increasing molecular length. A key reason for this is the limited treatment of electron-electron interactions (electron correlation) by existing transport methods particularly strong/multireference correlation. To resolve this, the Hoy/Sand research team will develop a fully-quantum family of multiconfigurational charge transport methods based on multiconfiguration pair density functional theory (MC-PDFT) combined with the non-equilibrium Green’s function formalism (NEGF). Key objectives include the development of new MC-PDFT-based effective Hamiltonians and self-consistent optimization schemes for multiconfigurational Green’s function transport theories. The integration of these developments within an open-source modular Python framework allows for the characterization of multireference correlation effects in quantum transport phenomena. Using these NEGF-MCPDFT methodologies, the team will investigate including reversed conductance decay, Coulomb blockades, and Kondo Resonances to enhance the scientific community’s understanding of quantum charge transport phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罗文大学的 Erik Hoy 教授和巴特勒大学的 Andrew Sand 教授获得了化学系化学理论、模型和计算方法 (CTMC) 项目的资助,以在量子水平上表征新颖的电荷传输过程。对于在电子、太阳能和材料开发等对国家长期经济成功至关重要的领域寻求新的发展至关重要。纳米级有机电子器件显示出独特的电荷传输特性,可用于设计改进的电子器件(例如晶体管、电阻器),但是使用现有的计算方法来描述许多此类设备中的电荷传输具有挑战性,Rowan 和 Butler 联合团队将开发新的计算工具,用于生成设计基于非经典电荷传输的下一代电子设备所需的电荷传输数据。所开发的计算工具将被纳入 OpenMolcas 软件包中,该软件包广泛用于教育和研究工作,巴特勒大学和罗文大学都对本科教育做出了坚定的承诺,该项目的核心教育成果是开发。从事计算工作的本科生适合以下任一类别通过与导师计划和当地社区学院的学生招募合作伙伴关系,该项目为来自非传统背景和计算科学领域代表性不足的群体的学生提供了一条研究途径。单分子器件是通过将单个有机分子与金属或碳基电极相结合而创建的,是增强科学界对量子水平电荷传输理解的关键实验平台,有可能成为下一代量子器件的基础。晶体管,我们对纳米级电子学中的非经典电荷传输效应的理论理解仍然存在很大差距,例如随着分子长度的增加而发生的预期电导衰减的逆转。为了解决这个问题,Hoy/Sand 研究团队将开发基于多构型对密度泛函理论的全量子族多构型电荷传输方法。 (MC-PDFT)与非平衡格林函数形式主义(NEGF)相结合的主要目标包括开发新的基于 MC-PDFT 的有效哈密顿量和多构型格林函数输运理论的自洽优化方案。在开源模块化 Python 框架内,可以使用这些 NEGF-MCPDFT 方法来表征量子输运现象中的多参考相关效应,包括反向电导衰减、库仑等。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Sand其他文献

Andrew Sand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

密集阵列可见光通信系统多域协作的调制多址技术研究
  • 批准号:
    61701536
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
非正交多址接入下高可靠性协作多播技术研究
  • 批准号:
    61601347
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
不完全量测与通信局限下的多机器人协作实时SLAM一致性分析研究
  • 批准号:
    61305134
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
以协作中继为核心的无线网络多资源联合分配问题研究
  • 批准号:
    61272133
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
基于协作通信的能量有效无线网络多信息流路由问题研究
  • 批准号:
    61170058
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 8.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了