EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
基本信息
- 批准号:2127754
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Homelessness and housing insecurity present fundamental challenges for the delivery of social services. The absence of stable accommodations increases the risks of poor outcomes for all members of the household, including children, experiencing this insecurity. This project is an exploratory study in the use of techniques from artificial intelligence (AI) to improve early screening and the delivery of targeted assistance to households that are at risk of future homelessness and child maltreatment. The team will seek to develop novel methods for allocation of scarce housing-support resources to at-risk households, taking into account considerations of both overall efficiency and fairness. This work will necessitate novel problem formulation and algorithm development in AI as well as creating new ethical methods for deciding on how to effectively deliver social services taking into account the vast complexity of human behavior. Moreover, reducing the risks of homelessness and child maltreatment are critical societal goals with the potential to substantively improve the lives of many of our most vulnerable citizens.This project will explore the feasibility of using novel algorithmic techniques to inform societal decision-making on the allocation of scarce resources, with the specific goal of improving service system outcomes for both homelessness and child welfare. The team's focus will be on homelessness prevention interventions that offer timely, non-reoccurring resources to stabilize families at risk of experiencing housing crises; examples of such resources include landlord mediation, one-time rent or utility payments, and moving expenses. They will leverage unique datasets on child welfare and homelessness in the research, and use these to inform the design of machine learning approaches to prediction of outcomes (specifically, repeat episodes of homelessness and future interactions with child protective services), and optimization techniques that leverage these predictions in order to decide on which households to target for prevention interventions. The interplay of prediction and optimization, in a context where the overall allocation must both improve social welfare (measured along multiple dimensions) and satisfy notions of fairness, equity, and local justice in the allocation of scarce resources, is a challenging domain for AI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无家可归和住房不安全给社会服务的提供带来了根本挑战。缺乏稳定的住处会增加经历这种不安全感的所有家庭成员(包括儿童)遭受不良后果的风险。该项目是一项探索性研究,旨在利用人工智能 (AI) 技术来改善早期筛查,并向未来面临无家可归和儿童虐待风险的家庭提供有针对性的援助。该团队将寻求开发新方法,将稀缺的住房支持资源分配给高风险家庭,同时考虑整体效率和公平性。这项工作将需要在人工智能中提出新的问题和算法开发,并创建新的道德方法来决定如何有效地提供社会服务,同时考虑到人类行为的巨大复杂性。此外,减少无家可归和虐待儿童的风险是重要的社会目标,有可能实质性改善许多最弱势公民的生活。该项目将探索使用新颖的算法技术为社会分配决策提供信息的可行性稀缺资源,其具体目标是改善无家可归者和儿童福利的服务系统成果。该团队的重点将是无家可归预防干预措施,提供及时、非重复性的资源,以稳定面临住房危机风险的家庭;此类资源的例子包括房东调解、一次性租金或水电费以及搬家费用。他们将在研究中利用有关儿童福利和无家可归的独特数据集,并利用这些数据来设计机器学习方法来预测结果(特别是无家可归的重复事件以及未来与儿童保护服务的互动),以及利用这些数据的优化技术这些预测是为了决定针对哪些家庭进行预防干预。在总体分配必须提高社会福利(从多个维度衡量)并满足稀缺资源分配的公平、公正和地方正义理念的背景下,预测和优化的相互作用对于人工智能来说是一个具有挑战性的领域。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Community- and data-driven homelessness prevention and service delivery: optimizing for equity
社区和数据驱动的无家可归预防和服务提供:优化公平
- DOI:10.1093/jamia/ocad052
- 发表时间:2023-04
- 期刊:
- 影响因子:6.4
- 作者:Kube, Amanda R.;Das, Sanmay;Fowler, Patrick J.
- 通讯作者:Fowler, Patrick J.
Incentivizing Truthfulness Through Audits in Strategic Classification
通过战略分类审计激励诚实
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Estornell, Andrew;Das, Sanmay;Vorobeychik, Yevgeniy
- 通讯作者:Vorobeychik, Yevgeniy
Local Justice and the Algorithmic Allocation of Scarce Societal Resources
地方正义与稀缺社会资源的算法分配
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Sanmay Das
- 通讯作者:Sanmay Das
Trade-offs between Group Fairness Metrics in Societal Resource Allocation
社会资源配置中群体公平指标之间的权衡
- DOI:10.1145/3531146.3533171
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Mashiat, Tasfia;Gitiaux, Xavier;Rangwala, Huzefa;Fowler, Patrick J.;and Das, Sanmay
- 通讯作者:and Das, Sanmay
Scarce Societal Resource Allocation and the Price of (Local) Justice
稀缺的社会资源配置和(地方)正义的代价
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Nguyen, Quan;Das, Sanmay;Garnett, Roman
- 通讯作者:Garnett, Roman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanmay Das其他文献
Local Justice and the Algorithmic Allocation of Societal Resources
地方正义与社会资源的算法配置
- DOI:
10.1609/aaai.v36i11.21486 - 发表时间:
2021-11-10 - 期刊:
- 影响因子:0
- 作者:
Sanmay Das - 通讯作者:
Sanmay Das
Revenue Enhancement via Asymmetric Signaling in Interdependent-Value Auctions
通过相互依赖价值拍卖中的不对称信号增加收入
- DOI:
10.1609/aaai.v33i01.33012093 - 发表时间:
2019-07-17 - 期刊:
- 影响因子:0
- 作者:
Zhuoshu Li;Sanmay Das - 通讯作者:
Sanmay Das
Coordinated Versus Decentralized Exploration In Multi-Agent Multi-Armed Bandits
多代理多武装强盗中的协调探索与分散探索
- DOI:
10.24963/ijcai.2017/24 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:0
- 作者:
Mithun Chakraborty;Kai Yee Phoebe Chua;Sanmay Das;Brendan Juba - 通讯作者:
Brendan Juba
A Hybrid Model for Disease Spread and an Application to the SARS Pandemic
疾病传播的混合模型及其在 SARS 大流行中的应用
- DOI:
10.18564/jasss.1782 - 发表时间:
2010-07-26 - 期刊:
- 影响因子:0
- 作者:
T. Yoneyama;Sanmay Das;M. Krishnamoorthy - 通讯作者:
M. Krishnamoorthy
GenSyn: A Multi-stage Framework for Generating Synthetic Microdata using Macro Data Sources
GenSyn:使用宏观数据源生成综合微观数据的多阶段框架
- DOI:
10.1109/bigdata55660.2022.10021001 - 发表时间:
2022-12-08 - 期刊:
- 影响因子:0
- 作者:
Angeela Acharya;S. Sikdar;Sanmay Das;Huzefa Rangwala - 通讯作者:
Huzefa Rangwala
Sanmay Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanmay Das', 18)}}的其他基金
RI: Small: Efficient and Just Allocation of Scarce Societal Resources, and Applications to Homelessness
RI:小型:稀缺社会资源的有效和公正分配以及无家可归者的应用
- 批准号:
2127752 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RI: Small: Efficient and Just Allocation of Scarce Societal Resources, and Applications to Homelessness
RI:小型:稀缺社会资源的有效和公正分配以及无家可归者的应用
- 批准号:
1910392 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
- 批准号:
1927422 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RI: Small: Modeling Platform Competition: A Multi-Agent Systems Approach
RI:小型:建模平台竞赛:多代理系统方法
- 批准号:
1527037 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: The Dynamics of Collective Intelligence
职业:集体智慧的动力
- 批准号:
1414452 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: The Dynamics of Collective Intelligence
职业:集体智慧的动力
- 批准号:
1303350 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: The Dynamics of Collective Intelligence
职业:集体智慧的动力
- 批准号:
0952918 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
- 批准号:82302185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
- 批准号:72303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
- 批准号:22303102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
- 批准号:62367003
- 批准年份:2023
- 资助金额:29 万元
- 项目类别:地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
- 批准号:82304384
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Education DCL: EAGER: Advancing Secure Coding Education: Empowering Students to Safely Utilize AI-powered Coding Assistant Tools
教育 DCL:EAGER:推进安全编码教育:使学生能够安全地利用人工智能驱动的编码辅助工具
- 批准号:
2335798 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Education DCL: EAGER: Developing Experiential Cybersecurity and Privacy Training for AI Practitioners
教育 DCL:EAGER:为人工智能从业者开发体验式网络安全和隐私培训
- 批准号:
2335700 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Education DCL: EAGER: Generative AI-based Personalized Cybersecurity Tutor for Fourth Industrial Revolution
教育 DCL:EAGER:第四次工业革命的基于生成人工智能的个性化网络安全导师
- 批准号:
2335046 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
- 批准号:
2125116 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER:AI-DCL:Capture, Explain and Negotiate the Inherent Trade-offs in Machine Learning Algorithms
EAGER:AI-DCL:捕获、解释和协商机器学习算法中固有的权衡
- 批准号:
2000782 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant