Complex dynamics: group actions, Migdal-Kadanoff renormalization, and ergodic theory

复杂动力学:群作用、Migdal-Kadanoff 重整化和遍历理论

基本信息

  • 批准号:
    2154414
  • 负责人:
  • 金额:
    $ 28.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Dynamical systems is the area of mathematics that studies how the state of a system changes with time. Such systems are abundant in all areas of science including biology, chemistry, and physics. They are also readily visible in our everyday lives, ranging from describing the ways in which a disease epidemic is likely to progress to predicting the weather. Given the initial state of the system, one would like to know what the future state of the system will be, as well as the long-term behavior of the system. The equations describing such real-world phenomena are very complicated and are usually custom tailored to the system at hand. They are typically far too difficult for rigorous study and scientists must often use numerical simulations to analyze them. However, the underlying dynamical phenomena can often be understood by studying simpler systems whose states can be described in terms of one or two variables. This project will support the study of dynamical systems consisting of iterating rational mappings in two complex variables, a setting where the powerful tools of complex analysis and algebraic geometry are available. The research is designed around three principles: (1) exploring connections between two or more different areas of mathematics can lead to surprising new results, (2) dynamical systems having an additional context from another field can be studied significantly more deeply, and (3) a study of concrete examples often leads to more general theories. Among other things, this project will support Ph.D. students from Indiana University-Purdue University Indianapolis to engage in these research topics, thus training them in dynamical systems. The broader impacts of this grant will be further achieved through the principal investigator's mentoring of highly talented high-school students from the Indianapolis area, and running the IUPUI High School Math Contest which engages approximately 60 to 100 high-school students from Indiana each year.This research project is concerned with complex dynamics in higher dimensions. The main goal is to study the iterates of holomorphic (or rational) self-mappings of a complex manifold of dimension two or larger, and, more generally, to study the actions of finitely generated groups of biholomorphic (or birational) self-mappings. The topics to be investigated, which draw connections with other areas of mathematics, include: (1) holomorphic group actions on complex surfaces coming from the monodromy of the Painleve 6 differential equation, (2) Migdal-Kadanoff renormalization mappings associated to phenomena in statistical physics on hierarchical lattices, and (3) ergodic theory of rational maps with transcendental first dynamical degree. Understanding the underlying systems will lead to valuable theoretical results in holomorphic dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统是研究系统状态如何随时间变化的数学领域。 这样的系统在包括生物学、化学和物理学在内的所有科学领域中都很丰富。 它们在我们的日常生活中也很容易看到,从描述疾病流行的可能进展方式到预测天气。 给定系统的初始状态,人们想知道系统的未来状态以及系统的长期行为。 描述此类现实世界现象的方程非常复杂,通常是根据当前的系统定制的。 它们通常对于严格的研究来说太困难了,科学家必须经常使用数值模拟来分析它们。 然而,潜在的动力学现象通常可以通过研究更简单的系统来理解,这些系统的状态可以用一个或两个变量来描述。 该项目将支持对由两个复变量中的迭代有理映射组成的动力系统的研究,在这种情况下可以使用复分析和代数几何的强大工具。 该研究围绕三个原则进行设计:(1)探索两个或多个不同数学领域之间的联系可以带来令人惊讶的新结果,(2)可以更深入地研究具有来自另一个领域的附加背景的动力系统,以及(3 )对具体例子的研究通常会产生更普遍的理论。 除其他事项外,该项目将支持博士学位。印第安纳大学-普渡大学印第安纳波利斯分校的学生从事这些研究课题,从而对他们进行动力系统方面的培训。 通过首席研究员对印第安纳波利斯地区才华横溢的高中生的指导,以及每年吸引约 60 至 100 名印第安纳州高中生参加的 IUPUI 高中数学竞赛,将进一步实现这项资助的更广泛影响。该研究项目涉及更高维度的复杂动力学。 主要目标是研究二维或更大维度的复杂流形的全纯(或有理)自映射的迭代,并且更一般地,研究有限生成的双全纯(或双有理)自映射群的行为。 要研究的主题与其他数学领域有联系,包括:(1) 来自 Painleve 6 微分方程单调的复杂曲面上的全纯群作用,(2) 与统计现象相关的 Migdal-Kadanoff 重整化映射分层格子物理学,以及(3)具有先验第一动力学度的有理图遍历理论。了解底层系统将在全纯动力学方面产生有价值的理论成果。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roland Roeder其他文献

Roland Roeder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roland Roeder', 18)}}的其他基金

Midwest Dynamical Systems Conferences: 2022 and 2023
中西部动力系统会议:2022 年和 2023 年
  • 批准号:
    2230827
  • 财政年份:
    2022
  • 资助金额:
    $ 28.76万
  • 项目类别:
    Standard Grant
CAREER: Dynamics in Several Complex Variables, in Context
职业:在上下文中几个复杂变量的动态
  • 批准号:
    1348589
  • 财政年份:
    2014
  • 资助金额:
    $ 28.76万
  • 项目类别:
    Continuing Grant
Examples for complex dynamics in several variables
多个变量的复杂动力学示例
  • 批准号:
    1102597
  • 财政年份:
    2011
  • 资助金额:
    $ 28.76万
  • 项目类别:
    Standard Grant

相似国自然基金

斯格明子在无序杂质和纳米缺陷中的动力学相变与非平衡态输运研究
  • 批准号:
    12305053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性模型结构性误差的动力学订正方法研究
  • 批准号:
    42375059
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
有机磷光纳米闪烁体用于X射线光动力学治疗
  • 批准号:
    22371123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
抑制RUVBL1/2复合体逆转HnRNPA2B1-SG水凝胶相变阻断老年MCI大鼠术后神经认知恢复延迟动力学机制研究
  • 批准号:
    82371205
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
α-Fe2O3光电极温度依赖的载流子传输与表面反应动力学研究
  • 批准号:
    22309080
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sleep Spindle Dynamics as a Clinical Biomarker of Aging, Alzheimer's Disease, and Trisomy 21
睡眠纺锤体动力学作为衰老、阿尔茨海默病和 21 三体症的临床生物标志物
  • 批准号:
    10733629
  • 财政年份:
    2023
  • 资助金额:
    $ 28.76万
  • 项目类别:
Genetic information flow in the Hallmarks of Aging: from system-level analytics to mechanistic interventions
衰老标志中的遗传信息流:从系统级分析到机械干预
  • 批准号:
    10721479
  • 财政年份:
    2023
  • 资助金额:
    $ 28.76万
  • 项目类别:
Combining Absolute Quantitative Cross-Linking Mass Spectrometry and Molecular Modeling for Probing PROTAC-Mediated Ternary Complex Structures
结合绝对定量交联质谱和分子建模来探测 PROTAC 介导的三元复杂结构
  • 批准号:
    10572720
  • 财政年份:
    2023
  • 资助金额:
    $ 28.76万
  • 项目类别:
Modeling Complex Mechanisms Underlying Oral Health Disparities in Young Children and Their Caregivers
模拟幼儿及其照顾者口腔健康差异背后的复杂机制
  • 批准号:
    10893769
  • 财政年份:
    2023
  • 资助金额:
    $ 28.76万
  • 项目类别:
Dynamics of Neurocognitive Development in ADHD and Young Adult Outcomes
ADHD 和年轻人的神经认知发展动态
  • 批准号:
    10748895
  • 财政年份:
    2023
  • 资助金额:
    $ 28.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了