Set Theory and Its Applications
集合论及其应用
基本信息
- 批准号:2153975
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A century ago, there was a movement to put mathematics on a rigorous, unified foundation. Because the notion of a set is among the most primitive in mathematics, it was used as the basic fabric with which to build the more complicated objects of mathematics. Since that time, it has been realized that the properties of infinite sets are themselves quite subtle and defy a complete axiomatization. Moreover, these set-theoretic complexities sometimes manifest themselves in more complex mathematical structures, such as those studied in algebra, analysis, and geometry. The aim of this project is to further develop both our understanding of set-theoretic methods and also how they can be applied to problems arising in fields of mathematics such as algebra, analysis, and topology. While the project involves several lines of investigation, a central theme will be to develop a deeper understanding of the structure of the algebra of all piece-wise linear functions from the unit interval to itself using the lens of transfinite ordinal numbers, compactness, and large cardinals. This project includes the training of graduate students. The first part of the research project involves using set-theoretic tools to study groups of piecewise linear and piecewise projective homemorphisms. This includes attempting to prove the following conjecture of Matthew Brin and Mark Sapir: if G is a group of piece-wise linear homeomorphims of the unit interval, then either G is elementary amenable or else G contains an isomorphic copy of Richard Thompson's group F. It is the PI's thesis that not only is this conjecture true, but that it will be a consequence of a much finer analysis of subgroup structure of PLoI, the group of piece-wise linear homeomophisms of the unit interval. This analysis is expected to have other consequences: that the finitely generated subgroups of F are well quasi-ordered by embeddability; that any finitely presented subgroup of PLoI is either abelian or contains a copy of F; that Peano Arithmetic does not prove that F is amenable. Central to the analysis will be the countable transfinite ordinals. This part of the research project also concerns use of set-theoretic tools such as compactness and the algebra of elementary embeddings to study the amenability problem for F. The second part of the research project concerns further developing techniques in pure and applied set theory: methods for studying the vanishing of higher derived limits in homological algebra; the role that Jensen's diamond principle plays in the theory of the sets of hereditary cardinality at most aleph1.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一个世纪前,有一项运动将数学置于严格的统一基础上。由于集合的概念是数学上最原始的概念,因此它被用作构建数学更复杂对象的基本结构。从那时起,已经意识到,无限集的特性本身是非常微妙的,并且无视完整的公理化。此外,这些设定的理论复杂性有时在更复杂的数学结构中表现出来,例如在代数,分析和几何形状中研究的结构。该项目的目的是进一步发展我们对设定理论方法的理解,以及如何将它们应用于在代数,分析和拓扑等数学领域产生的问题。虽然该项目涉及几行调查,但中心主题将是对所有方面线性函数的结构进行更深入的了解,从单位间隔到本身的所有零件线性函数的结构,使用跨足的序数,紧凑型和大型的红衣主教。该项目包括对研究生的培训。研究项目的第一部分涉及使用固定理论工具来研究分段线性和分段投影型自杀式的组。 这包括试图证明Matthew Brin和Mark Sapir的以下猜想:如果G是单位间隔的一组线性同源物,那么G进行G是基本的,或者G包含Richard Thompson F群的同构副本。 Ploi,单位间隔的一组零件线性同源论。预计该分析将带来其他后果:F的有限生成的亚组通过嵌入性很好地排序;任何有限的Ploi子组都是Abelian或包含F的副本; Peano算术并不能证明F是可正常的。分析的中心将是可数的跨足序。 研究项目的这一部分还涉及使用集合理论工具(如紧凑性和基本嵌入的代数)来研究F的舒适性问题。研究项目的第二部分涉及在纯和应用集合理论中进一步开发技术:研究用于研究同源词汇中较高衍生限制的方法;詹森(Jensen)的钻石原理在最多杀手中的遗传基础性理论中所扮演的角色。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Moore其他文献
Predictors of Recurrent Venous Thrombosis After Cerebral Venous Thrombosis: Analysis of the ACTION-CVT Study.
脑静脉血栓形成后复发性静脉血栓形成的预测因素:ACTION-CVT 研究分析。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9.9
- 作者:
Liqi Shu;Ekaterina Bakradze;S. Omran;James A. Giles;Jordan Y. Amar;N. Henninger;Marwa Elnazeir;A. Liberman;Khadean Moncrieffe;Jenny Rotblat;Richa Sharma;Y. Cheng;Adeel S. Zubair;A. Simpkins;Grace T Li;J. Kung;D. Perez;M. Heldner;A. Scutelnic;Rascha von Martial;B. Siepen;A. Rothstein;Ossama Khazaal;David Do;S. Al kasab;Line Abdul Rahman;Eva A. Mistry;Deborah Kerrigan;Hayden Lafever;Thanh N. Nguyen;P. Klein;Hugo J. Aparicio;J. Frontera;L. Kuohn;Shashank Agarwal;C. Stretz;Narendra S Kala;Sleiman ElJamal;Allison Chang;Shawna Cutting;Fransisca Indraswari;A. D. de Havenon;Varsha Muddasani;Teddy Y. Wu;D. Wilson;A. Nouh;Daniyal Asad;A. Qureshi;Justin Moore;P. Khatri;Yasmin N. Aziz;Bryce Casteigne;Muhib Khan;Yao Cheng;Brian Mac Grory;Martin Weiss;D. Ryan;M. Vedovati;M. Paciaroni;J. Siegler;Scott Kamen;Siyuan Yu;C. L. Guerrero;Eugenie Atallah;G. D. De Marchis;A. Brehm;Tolga D. Dittrich;M. Psychogios;Ronald Alvarado;T. Kass;S. Prabhakaran;T. Honda;D. Liebeskind;K. Furie;S. Yaghi - 通讯作者:
S. Yaghi
Provided for Non-commercial Research and Educational Use Only. Not for Reproduction, Distribution or Commercial Use. Models and Metrics for Energy-efficient Computing
仅供非商业研究和教育用途。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Partha Ranganathan;S. Rivoire;Justin Moore;Justin Moore Google - 通讯作者:
Justin Moore Google
Clinical management of contrast-induced neurotoxicity: a systematic review.
对比剂引起的神经毒性的临床管理:系统评价。
- DOI:
10.1007/s13760-024-02474-4 - 发表时间:
2024 - 期刊:
- 影响因子:2.7
- 作者:
Frederick P. Mariajoseph;Jia Xi Chung;Leon T. Lai;Justin Moore;Tony Goldschlager;Ronil V. Chandra;Adrian J. Praeger;Lee - 通讯作者:
Lee
Thermal and optical properties of novel polyurea/silica organic–inorganic hybrid materials
新型聚脲/二氧化硅有机-无机杂化材料的热学和光学性能
- DOI:
10.1007/s10971-012-2782-y - 发表时间:
2012 - 期刊:
- 影响因子:2.5
- 作者:
Justin Moore;J. Shumaker;M. Houtz;Lirong Sun;A. Khramov;John G. Jones - 通讯作者:
John G. Jones
Unveiling the transport
揭开运输面纱
- DOI:
10.1145/972374.972392 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
J. Mogul;L. Brakmo;David E. Lowell;Dinesh Subhraveti;Justin Moore - 通讯作者:
Justin Moore
Justin Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Moore', 18)}}的其他基金
Descriptive Set Theory And Polish Groups at the Bernoulli Center
伯努利中心的描述性集合论和波兰群
- 批准号:
1800263 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Fields Institute Thematic Program: Forcing and its Applications
菲尔兹研究所主题项目:力及其应用
- 批准号:
1162052 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数K理论、代数数论及其在编码密码中的应用
- 批准号:12371035
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
面向六自由度交互的沉浸式视频感知编码理论与方法研究
- 批准号:62371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
一类双色散非局部波动方程初值问题的理论研究
- 批准号:12301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
- 批准号:52375516
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Neurodevelopmental variation of intrinsic functional connectivity and its relationship to psychosis risk and gene expression
内在功能连接的神经发育变异及其与精神病风险和基因表达的关系
- 批准号:
10600405 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
1950475 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Information theory based on general probabilistic theories and its application to the foundation of quantum mechanics
基于一般概率论的信息论及其在量子力学基础中的应用
- 批准号:
17K18107 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Set-theoretical investigation on properties of sets of reals and its application to computer science
实数集合性质的集合论研究及其在计算机科学中的应用
- 批准号:
17J00479 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows