Collaborative Research: Data-driven Power Systems Control with Stability Guarantees
合作研究:数据驱动的电力系统控制与稳定性保证
基本信息
- 批准号:2153937
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to design a new data-driven power system control framework with stability guarantee. Power systems are experiencing a period of rapid changes due to the proliferation of renewable generation and distributed energy resources including solar, electric vehicles, and batteries. Many of these new technologies are interfaced with the grid through power electronic interfaces (i.e., inverters) that can be controlled at a much faster timescale compared to conventional machines. However, how to leverage such flexibility is nontrivial due to the nonlinearity, complexity, and uncertainty in the underlying power network. This project will bring transformative changes by developing new reinforcement learning (RL) algorithms for inverter-based frequency and voltage control with formal stability guarantees. The intellectual merits of the project include (i) a novel framework that bridges Lyapunov control theory and RL, therefore providing stability guarantee for learning-based controllers; (ii) neural network structure design that ensures stability constraint is met by design. The broader impacts of the project include various of new courses development and research opportunities for students interested in both energy systems and machine learning/AI.The proposed research consists of three thrusts. Thrust 1 focuses on developing the algorithmic framework that integrates RL with Lyapunov stability constraints, which serves as a foundation to later thrusts. Specifically, we will leverage analytical models to construct Lyapunov functions and engineer the structure of neural network-based controllers to meet the stability constraints. Thrust 2 uses machine learning to discover new Lyapunov functions for realistic power system models and design stable control policies. Thrust 3 integrates the theory and algorithms developed in Thrusts 1 and 2, and robustifies the controllers against modeling error, and network topology re-configurations in both transmission and distribution grids. The contributions of the project are two-folded. On the theoretical side, the proposed research bridges classic control and learning, where control theory provides the structural constraints that guarantee a controller is stable, and RL with neural networks searches over the large parametric spaces to find the best performing controllers that have this structure. On the practical side, our approach clears a critical hurdle in applying RL to power systems by guaranteeing the stability of the learned policy. We envision our framework will serve as the basis for future learning-based smart power system control architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在设计具有稳定性保证的新的数据驱动电源系统控制框架。由于可再生能源生成和分布式能源(包括太阳能,电动汽车和电池)的扩散,电力系统正在经历一段时间的快速变化。与传统机器相比,这些新技术中的许多通过电力电子界面(即逆变器)连接到网格(即逆变器)。但是,如何利用这种灵活性是由于基础功率网络中的非线性,复杂性和不确定性而不是平凡的。该项目将通过为基于逆变器的频率和正式稳定性保证的基于逆变器的频率和电压控制的新增强学习(RL)算法带来变革性变化。该项目的智力优点包括(i)一个桥梁Lyapunov控制理论和RL的新颖框架,因此为基于学习的控制者提供了稳定保证; (ii)确保通过设计满足稳定性约束的神经网络结构设计。该项目的更广泛影响包括对能源系统和机器学习感兴趣的学生的各种新课程开发和研究机会。拟议的研究包括三个推力。推力1专注于开发将RL与Lyapunov稳定性约束集成的算法框架,这是后来推力的基础。具体而言,我们将利用分析模型来构建Lyapunov功能,并设计基于神经网络控制器的结构以满足稳定性约束。推力2使用机器学习来发现新的Lyapunov功能,以实现现实的电源系统模型和设计稳定的控制策略。推力3整合了推力1和2中开发的理论和算法,并鲁棒化控制器免于建模误差,以及在传输和分布网格中重新配置网络拓扑。该项目的贡献是两折。从理论方面来说,拟议的研究桥梁经典的控制和学习,其中控制理论提供了确保控制器稳定的结构约束,并且在较大的参数空间上搜索神经网络,以找到具有这种结构的最佳性能控制器。从实际方面来说,我们的方法通过保证学习政策的稳定性将RL应用于电力系统的关键障碍。我们设想我们的框架将作为基于未来的基于学习的智能电力系统控制体系结构的基础。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leveraging Predictions in Power System Frequency Control: An Adaptive Approach
- DOI:10.1109/cdc49753.2023.10383969
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Wenqi Cui;Guanya Shi;Yuanyuan Shi;Baosen Zhang
- 通讯作者:Wenqi Cui;Guanya Shi;Yuanyuan Shi;Baosen Zhang
Stable Reinforcement Learning for Optimal Frequency Control: A Distributed Averaging-Based Integral Approach
- DOI:10.1109/ojcsys.2022.3202202
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yan Jiang;Wenqi Cui;Baosen Zhang;Jorge Cort'es
- 通讯作者:Yan Jiang;Wenqi Cui;Baosen Zhang;Jorge Cort'es
Structured Neural-PI Control with End-to-End Stability and Output Tracking Guarantees
- DOI:10.48550/arxiv.2305.17777
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Wenqi Cui;Yan Jiang;Baosen Zhang;Yuanyuan Shi
- 通讯作者:Wenqi Cui;Yan Jiang;Baosen Zhang;Yuanyuan Shi
Efficient Reinforcement Learning Through Trajectory Generation
通过轨迹生成实现高效强化学习
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wenqi Cui;Linbin Huang;Weiwei Yang;Baosen Zhang
- 通讯作者:Baosen Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baosen Zhang其他文献
Non-Wire Alternatives to Capacity Expansion
容量扩展的无线替代方案
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jesus E. Contreras;U. Siddiqi;Baosen Zhang - 通讯作者:
Baosen Zhang
Controlling Grid-Connected Inverters under Time-Varying Voltage Constraints
时变电压约束下控制并网逆变器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zixiao Ma;Baosen Zhang - 通讯作者:
Baosen Zhang
Solving Differential-Algebraic Equations in Power Systems Dynamics with Neural Networks and Spatial Decomposition
用神经网络和空间分解求解电力系统动力学中的微分代数方程
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jochen Stiasny;Spyros Chatzivasileiadis;Baosen Zhang - 通讯作者:
Baosen Zhang
Control and Optimization of Power Systems with Renewables: Voltage Regulation and Generator Dispatch
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Baosen Zhang - 通讯作者:
Baosen Zhang
Using Battery Storage for Peak Shaving and Frequency Regulation: Joint Optimization for Superlinear Gains
使用电池存储进行调峰和频率调节:超线性增益的联合优化
- DOI:
10.1109/pesgm.2018.8586227 - 发表时间:
2018 - 期刊:
- 影响因子:6.6
- 作者:
Yuanyuan Shi;Bolun Xu;Di Wang;Baosen Zhang - 通讯作者:
Baosen Zhang
Baosen Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baosen Zhang', 18)}}的其他基金
CAREER: Optimal Control of Energy Systems via Structured Neural Networks: A Convex Approach
职业:通过结构化神经网络优化能源系统控制:凸方法
- 批准号:
1942326 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Learning for Faster Computations to Enhance Efficiency and Security of Power System Operations
协作研究:学习更快的计算以提高电力系统运行的效率和安全性
- 批准号:
2023531 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Enhanced Power System Stability using Fast, Distributed Power Electronics Control
使用快速分布式电力电子控制增强电力系统稳定性
- 批准号:
1930605 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Learning and Optimizing Power Systems: A Geometric Approach
协作研究:学习和优化电力系统:几何方法
- 批准号:
1807142 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
US Ignite: Collaborative Research: Focus Area 1: Social Computing Platform for Multi-Modal Transit
US Ignite:合作研究:重点领域 1:多式联运社交计算平台
- 批准号:
1646912 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: Congestion Mitigation via Better Parking: New Fundamental Models and A Living Lab
EAGER:通过更好的停车缓解拥堵:新的基本模型和生活实验室
- 批准号:
1634136 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CPS: Breakthrough: Collaborative Research: The Interweaving of Humans and Physical Systems: A Perspective from Power Systems
CPS:突破:协作研究:人类与物理系统的交织:电力系统的视角
- 批准号:
1544160 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
基于多组学数据的DNA甲基化与组蛋白修饰协作调控研究
- 批准号:62371347
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向车联网网络流量数据的多方协作学习风险控制机制研究
- 批准号:62373094
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:52205528
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动的在线学习协作会话过程监测与干预机制研究
- 批准号:72174070
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant