CDS&E: Reinforcement learning for robust wall models in large-eddy simulations

CDS

基本信息

  • 批准号:
    2152705
  • 负责人:
  • 金额:
    $ 33.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Simulations of wall-bounded turbulent flows have become a key element in the design cycle of wind farms and aircraft, and a major factor in the predictive capabilities of simulations of atmospheric flows. Due to the high Reynolds numbers associated with these flows, simulations resolving all scales of motion are not attainable with current computing capabilities. Specifically, wall models are necessary to overcome the prohibitive grid resolution requirements in the near-wall region. The abundance of data from experiments and simulations and the advent of machine learning have provided a boost to turbulence modeling efforts. However, simulations of turbulent flows remain hindered by the inability of heuristics and supervised learning to accurately model the near-wall dynamics. The principal aim of this project is to develop a robust wall model that can accurately predict the near-wall dynamics. The project will also encompass significant educational activities, including a multi-year undergraduate summer research program for the under-represented minority groups.The goal of the project is to develop a robust wall model for large-eddy simulations through reinforcement learning. Presently, the development of the state-of-the-art wall models relies on Reynolds-averaged Navier-Stokes parametrizations with an explicit or implicit assumption of a particular flow state close to the wall. These assumptions limit the robustness and applicability of the model and often lead to erroneous predictions of separation and laminar-to-turbulent transition, both of which are crucial components in external aerodynamics. By utilizing reinforcement learning methods, the project will allow the development of novel wall models that can adapt to various flow configurations based on the instantaneous flow input. The wall modeling problem will be cast as a control problem, where the discovered model is optimized to accurately reproduce the quantities of interest by automating the exploration of the relevant flow physics. The development of the proposed wall model will advance the state-of-the-art in the simulation of high-Reynolds-number turbulent flows in complex external aerodynamic applications. This will provide a means to obtain cheap and reliable simulations of complex flows such as flow over an aircraft.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
壁挂式湍流的模拟已成为风电场和飞机设计周期中的关键要素,也是大气流模拟预测能力的主要因素。由于与这些流量相关的较高的雷诺数,因此解决所有运动尺度的模拟无法实现当前的计算能力。具体而言,墙模型对于克服近壁区域的过度网格分辨率要求是必要的。来自实验和模拟的大量数据以及机器学习的出现为湍流建模工作提供了推动力。然而,由于启发式方法和监督学习以准确对近壁动力学建模的学习,湍流的模拟仍然阻碍了。该项目的主要目的是开发一个可以准确预测近壁动力学的强大墙模型。该项目还将涵盖重大的教育活动,包括针对代表性不足的少数群体的多年本科夏季研究计划。该项目的目的是通过增强学习开发一个强大的大涡模拟墙模型。目前,最先进的墙模型的开发依赖于雷诺平均的Navier-Stokes参数化,具有明确或隐式的假设,即靠近壁的特定流量状态。这些假设限制了模型的鲁棒性和适用性,并且通常会导致分离和椎间盘向肿胀的跃迁的错误预测,这两者都是外部空气动力学中的关键组成部分。通过利用增强学习方法,该项目将允许开发基于瞬时流入输入的各种流程配置的新型墙模型。墙壁建模问题将被施加为一个控制问题,在其中优化了发现的模型,以通过自动探索​​相关流体物理学来准确地重现感兴趣的数量。在复杂的外部空气动力学应用中,提出的壁模型的开发将推进模拟高雷诺数驱动流动的最先进。这将提供一种手段,以获取对飞机流量等复杂流量的廉价模拟。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large-Eddy Simulation of Flow over Boeing Gaussian Bump Using Multi-Agent Reinforcement Learning Wall Model
使用多智能体强化学习墙模型对波音高斯凸块上的流动进行大涡模拟
Sensitivity analysis of wall-modeled large-eddy simulation for separated turbulent flow
  • DOI:
    10.1016/j.jcp.2024.112948
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Di Zhou;H. J. Bae
  • 通讯作者:
    Di Zhou;H. J. Bae
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jane Bae其他文献

Jane Bae的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水系硫基液流电池中电荷加强型膜质-荷传输的结构协同调控机制
  • 批准号:
    22378319
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
内共振加强参激模式能量采集非线性动力学理论与实验研究
  • 批准号:
    12302010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耗散加强理论在非线性系统与随机抽样中的应用
  • 批准号:
    12301283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用空间分布式腔自对准特性加强钛宝石激光器稳定性的研究
  • 批准号:
    62305019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Learning to Reason in Reinforcement Learning
在强化学习中学习推理
  • 批准号:
    DP240103278
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Discovery Projects
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
CAREER: Stochasticity and Resilience in Reinforcement Learning: From Single to Multiple Agents
职业:强化学习中的随机性和弹性:从单个智能体到多个智能体
  • 批准号:
    2339794
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Continuing Grant
CAREER: Towards Real-world Reinforcement Learning
职业:走向现实世界的强化学习
  • 批准号:
    2339395
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了