FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry

FRG:合作研究:代数几何中的更高范畴结构

基本信息

  • 批准号:
    2152088
  • 负责人:
  • 金额:
    $ 34.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This project aims to apply major new developments in mathematics to open questions in algebra and algebraic geometry. Algebra is the study of generalized systems of numbers, while algebraic geometry is concerned with the geometry of solutions of polynomial equations. Both fields are used throughout mathematics and touch regularly on daily life via algorithms used in computer vision (for instance in cell phone cameras), satellite communications (error-correcting codes), and secure messaging (cryptography using elliptic curves). The project also uses higher category theory developed over the last two decades, which makes it possible to systematically deal with subtle, loosely defined objects. This extra flexibility leads to new control over the basic objects used in algebraic geometry. Even more recently, some work on condensed mathematics raises the possibility of extending this new control to closely related areas of analysis. This project will use this cutting-edge work to attempt to settle longstanding questions in algebraic geometry and to introduce and solve new questions in analytical algebraic geometry. It will provide research and training opportunities for graduate students and postdoctoral researchers and will support several workshops aimed at early-career mathematicians.There are four main research challenges addressed by this project. First, the PIs aim to find complete noncommutative categorical invariants and to find a bridge directly from the topological invariants to the categorical ones. No known noncommutative categorical invariant suffices to reconstruct an algebraic variety. In good cases, work of the PIs and collaborators shows that the underlying space is enough for such a reconstruction. Next, to clarify the role of commutative objects inside noncommutative objects, the PIs will study the deformations and local systems of dg categories in an attempt to settle Orlov's geometricity conjecture. Third, the PIs will study the p-adic cohomology of algebraic varieties via higher categorical invariants such as topological Hochschild homology, applied to the derived category. Finally, the PIs will try to show that the recently constructed theory of nuclear modules yields the correct noncommutative invariants of a rigid analytic variety and will aim to generalize the first three projects to the more general analytic context.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在将数学方面的主要新发展应用于代数和代数几何形状的问题。代数是对数量的广义系统的研究,而代数几何形状与多项式方程溶液的几何形状有关。这两个字段均在整个数学过程中使用,并通过计算机视觉中使用的算法定期触摸日常生活(例如,在手机摄像机中),卫星通信(错误校正代码)和安全消息传递(使用椭圆形曲线的密码学)。该项目还使用了过去二十年来开发的较高类别理论,这使得有可能系统地处理微妙的,松散定义的对象。这种额外的灵活性导致对代数几何形状中使用的基本对象的新控制。最近,一些关于凝结数学的工作增加了将这种新控制扩展到紧密相关的分析领域的可能性。该项目将利用这项尖端的工作来试图解决代数几何形状中的长期问题,并在分析代数几何形状中介绍和解决新问题。它将为研究生和博士后研究人员提供研究和培训机会,并将支持针对早期数学家的几个研讨会。该项目提出了四个主要的研究挑战。首先,PI的目的是找到完整的非交通性分类不变式,并直接从拓扑不变的桥上找到一座桥。 没有已知的非交通性分类不变性足以重建代数品种。在好的情况下,PIS和合作者的工作表明,基础空间足以进行这种重建。接下来,为了阐明不交流对象内的交换对象的作用,PI将研究DG类别的变形和局部系统,以解决Orlov的几何形状猜想。第三,PI将通过更高的分类不变式(例如拓扑Hochschild同源性)研究代数品种的P-ADIC共同体,应用于派生类别。最后,PI将试图表明,最近建造的核模块理论产生了刚性分析多样性的正确非交换性不变性,并将旨在将前三个项目推广到更一般的分析环境中。该奖项反映了NSF的法定任务,并通过使用基金会的知识优点和广泛的影响来评估通过评估来进行评估,并通过评估值得进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Caldararu其他文献

Andrei Caldararu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Caldararu', 18)}}的其他基金

Categorical Invariants in Non-commutative Geometry
非交换几何中的分类不变量
  • 批准号:
    2202365
  • 财政年份:
    2022
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Standard Grant
Higher genus categorical Gromov-Witten invariants
高属分类 Gromov-Witten 不变量
  • 批准号:
    1811925
  • 财政年份:
    2018
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Continuing Grant
RTG: Algebraic Geometry, Applied Algebra, and Number Theory at the University of Wisconsin
RTG:威斯康星大学代数几何、应用代数和数论
  • 批准号:
    1502553
  • 财政年份:
    2015
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Continuing Grant
Applications of derived algebraic geometry to problems in Hodge and Lie theory
派生代数几何在霍奇和李理论问题中的应用
  • 批准号:
    1200721
  • 财政年份:
    2012
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Standard Grant
Generalized A-infinity algebras, stability structures, and Hochschild homology
广义 A-无穷代数、稳定性结构和 Hochschild 同调
  • 批准号:
    0901224
  • 财政年份:
    2009
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Standard Grant
Hochschild theory in algebraic geometry
代数几何中的霍克希尔德理论
  • 批准号:
    0556042
  • 财政年份:
    2006
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202567
  • 财政年份:
    2002
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Standard Grant

相似国自然基金

临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 34.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了