SHF: SMALL: End-to-End Global Routing with Reinforcement Learning in VLSI Systems

SHF:小型:VLSI 系统中采用强化学习的端到端全局路由

基本信息

  • 批准号:
    2151854
  • 负责人:
  • 金额:
    $ 49.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Integrated circuits have transformed every sector of modern life with a broad range of computing devices – from personal computers to specialized accelerators and high-performance computing clusters. With the ever-high design complexity of modern integrated systems, traditional electronic design-automation algorithms cannot guarantee convergence of the design process, fail to predict output quality, and often settle for lower performance. Considering billions of dollars spent on developing a system in a new technology node, the loss of profit due to not having the system ready on time for release to market or losing the performance benefits of the new technology node cannot be mitigated. This project investigates a fundamentally new approach for circuit global routing -- a critical automated design step and a primary bottleneck in the design process. The primary objective is to route circuits with deep-learning models in a highly parallelizable manner, shortening the turnaround design time by orders of magnitude. More broadly, the results from this project are expected to shift existing physical-design paradigms toward a learning-driven predictable process that can exploit the advantages of the underlying technology to their full potential in a timely manner. Executed by a federally designated Hispanic Serving Institution, this award presents a unique opportunity to engage with a diverse minority population and creates training opportunities in circuit design, electronic design automation, and machine learning. As such, the project is anticipated to have a strong economic and societal impact.Designed via a pile of intractable optimizations to tackle the NP-hard problem of global routing, traditional routers are characterized by convergence issues and unpredictable routing quality. While there is a general agreement on potential benefits of realizing routing with machine-learning (ML) models, not a single end-to-end learning framework has been demonstrated to route unseen high-resolution practical integrated circuits.To address this challenge, global routing will be investigated as an ML problem in which nets are viewed as the missing parts of a routing solution and reconstructed, in a preferred order, with imaging ML models while considering the overall minimum wirelength objective and congestion constraints. The insights from this study will be exploited to develop a reinforcement-learning framework comprising: (i) graph neural network for encoding routing attributes, (ii) net ordering policy for determining the next net to be routed, and (iii) variational autoencoder to route individual unseen nets. The resulting design methodology and ML models, architectures, and algorithms will be integrated in an end-to-end ML router and demonstrated on existing benchmarks and commercial products provided by industrial collaborators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
综合电路已经通过广泛的计算设备(从个人计算机到专业加速器和高性能计算簇)改变了现代生活的每个部门。随着现代集成系统的最高设计复杂性,传统的电子设计自动化算法无法保证设计过程的融合,无法预测输出质量,并且通常会降低性能。考虑到在新技术节点中开发系统上数十亿美元的支出,由于无法按时发布该系统的损失,因此无法按时发布该系统或失去新技术节点的性能收益。该项目研究了一种从根本上进行全新的全局路由方法,这是一个关键的自动化设计步骤和设计过程中的主要瓶颈。主要目的是以高度可行的方式路由带有深入学习模型的电路,从而通过数量级缩短周转时间。更广泛地说,该项目的结果有望将现有的物理设计范式转移到以学习为导向的可预测过程中,该过程可以及时探索基础技术的优势及其全部潜力。该奖项由联邦指定的西班牙裔服务机构执行,为与少数群体的互动提供了独特的机会,并在巡回设计,电子设计自动化和机器学习方面创造了培训机会。因此,预计该项目将产生强烈的经济和社会影响。通过一堆棘手的优化设计来解决全球路由的NP坚硬问题,传统路由器的特征是融合问题和不可预测的路由质量。 While there is a general agreement on potential benefits of realizing routing with machine-learning (ML) models, not a single end-to-end learning framework has been demonstrated to route unseen High-resolution practical integrated circuits.To address this challenge, global routing will be investigated as an ML problem in which nets are viewed as the missing parts of a routing solution and reconstructed, in a preferred order, with imaging ML models while considering the overall minimum wireless objective and拥堵限制。将探讨本研究的见解,以开发一个包括:(i)用于编码路由属性的图形神经网络,(ii)用于确定要路由的下一个网络的网络排序策略,以及(iii)变异自动编码器以路由单个未看到的网络。由此产生的设计方法论和ML模型,体系结构和算法将集成到端到端的ML路由器中,并在工业合作者提供的现有基准和商业产品上进行了证明。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识优点和广泛影响的评估来评估的值得支持的,并被认为是值得的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiterminal Pathfinding in Practical VLSI Systems with Deep Neural Networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Inna Partin-Vaisband其他文献

Inna Partin-Vaisband的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Inna Partin-Vaisband', 18)}}的其他基金

CAREER: Unified Reference-Free Early Detection of Hardware Trojans via Knowledge Graph Embeddings
职业:通过知识图嵌入对硬件木马进行统一的无参考早期检测
  • 批准号:
    2238976
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: 2D Ambipolar Machine Learning & Logical Computing Systems
合作研究:2D 双极机器学习
  • 批准号:
    2154385
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant

相似国自然基金

SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
  • 批准号:
    82373728
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
APOE调控小胶质细胞脂代谢模式在ASD认知和社交损伤中的作用及机制研究
  • 批准号:
    82373597
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小胶质细胞外泌体通过miR-486抑制神经元铁死亡介导电针修复脊髓损伤的机制研究
  • 批准号:
    82360454
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
CUL4B正反馈调控FOXO3a-FOXM1通路促进非小细胞肺癌放疗抵抗的机制研究
  • 批准号:
    82360584
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
葡萄糖饥饿条件下AMPK-CREB-PPA1信号通路促进非小细胞肺癌细胞增殖的分子机制研究
  • 批准号:
    82360518
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
  • 批准号:
    2327136
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Pre-clinical Bruker Albira Si PET/SPECT/CT imaging system
临床前 Bruker Albira Si PET/SPECT/CT 成像系统
  • 批准号:
    10633022
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
Role of miR-195 in Chemo-Resistant Ovarian Cancer
miR-195 在化疗耐药性卵巢癌中的作用
  • 批准号:
    10640540
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
ALDH2 inhibitors for the treatment of AUD
ALDH2抑制剂用于治疗AUD
  • 批准号:
    10664502
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了