REU Site: Discrete and Continuous Analysis in Appalachia

REU 站点:阿巴拉契亚的离散和连续分析

基本信息

  • 批准号:
    2150226
  • 负责人:
  • 金额:
    $ 32.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The Department of Computer Science and Mathematics at Fairmont State University will host an eight-week REU Site during the summers of 2022, 2023, and 2024. A primary goal of the site is to increase the preparedness of undergraduate students from the Appalachian region to pursue graduate school and STEM-focused careers. The program emphasizes the participation of students from groups that are underrepresented in mathematics, especially students from rural areas, first-generation college students, and students from a low socioeconomic status. The REU provides research experiences in calculus on time scales, a branch of mathematics that unifies and extends the common calculus and related theories, and has applications in mathematical biology, engineering, finance, and statistics, among others. Students improve their research abilities as well as their technical, oral, and written communication skills and acquire an understanding of educational and career opportunities available beyond an undergraduate degree. Participants are required to present their work based on the program projects at an annual local undergraduate research symposium and encouraged and assisted in preparing peer-reviewed publications.Each summer, ten undergraduate students, with roughly half from schools in the Appalachian region, are recruited to attend an eight-week long REU site. The first week of the program is dedicated to building the mathematical and programming prerequisites of participants, and to the formulation of research projects connecting calculus on time scales with control theory, special functions theory, and probability theory. Students provide reports of progress to advisors each week and present their work to all participants on Fridays. Professional development opportunities are offered on how to apply for graduate school, on strategies for effectively working in a group environment, on software systems for scientific document preparation, and on giving technical presentations. Participants are also exposed to other research areas in mathematics through a weekly Distinguished Speakers Series. This project is jointly funded by the Division of Mathematical Sciences and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
费尔蒙州立大学计算机科学和数学系将在2022年,2023年和2024年的夏季举办一个为期八周的REU站点。该网站的主要目标是增加阿巴拉契亚地区的本科生的准备,从而从事研究生院并从事以STEM专注的职业。该计划强调了来自数学人数不足的小组的学生的参与,尤其是来自农村地区的学生,第一代大学生以及来自低社会经济地位的学生。 REU可以按时间尺度进行微积分的研究经验,这是数学分支,统一并扩展了共同的微积分和相关理论,并且在数学生物学,工程,金融,统计和统计等方面都有应用。学生提高了他们的研究能力以及他们的技术,口头和书面沟通技巧,并了解了本科学位以外的教育和职业机会。参与者必须根据计划项目在一年的年度本科本科研究研讨会上介绍其工作,并鼓励和协助准备同行评审的出版物。每个夏季,十个本科生,大约有一半来自阿巴拉契亚地区的学校,被招募到一个为期八周的长REU站点。该计划的第一周致力于构建参与者的数学和编程先决条件,以及在时间尺度上与控制理论,特殊功能理论和概率理论连接微积分的研究项目的制定。学生每周向顾问提供进度的报告,并在星期五向所有参与者介绍他们的工作。提供了有关如何在小组环境中有效工作的策略,用于科学文档准备的软件系统以及进行技术演讲的策略,提供了有关如何申请研究生院的专业发展机会。参与者还通过每周的杰出演讲者系列接触了数学研究领域的其他研究领域。该项目由数学科学部和启发竞争性研究的既定计划共同资助(EPSCOR)。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准的评估值得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Niichel其他文献

ADVANCING HIGH TECH DRUG DELIVERY SYSTEMS FOR THE TREATMENT OF CROHN’S DISEASE
  • DOI:
    10.1053/j.gastro.2021.01.038
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Douglas Miller;Robert Niichel
  • 通讯作者:
    Robert Niichel

Robert Niichel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Niichel', 18)}}的其他基金

Bridging the STEM Gap in Appalachia: Engaging with students to iteratively improve faculty practices in support of student success
缩小阿巴拉契亚地区的 STEM 差距:与学生互动,不断改进教师实践,支持学生取得成功
  • 批准号:
    2130106
  • 财政年份:
    2022
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Standard Grant

相似国自然基金

硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
  • 批准号:
    82371901
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
中国恐龙骨骼化石时空分布综合研究
  • 批准号:
    42372030
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
  • 批准号:
    82371902
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
  • 批准号:
    82370790
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Continuing Grant
REU Site: Research Experiences for Undergraduates in Discrete and Applied Mathematics
REU 网站:离散与应用数学本科生的研究经验
  • 批准号:
    2244461
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Continuing Grant
REU Site: Queens Experiences in Discrete Mathematics
REU 网站:皇后区离散数学经验
  • 批准号:
    2150251
  • 财政年份:
    2022
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Standard Grant
REU Site: Research Challenges of Computational Methods in Discrete Mathematics
REU 网站:离散数学计算方法的研究挑战
  • 批准号:
    2150299
  • 财政年份:
    2022
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Standard Grant
REU Site: New York City Discrete Mathematics REU
REU 站点:纽约市离散数学 REU
  • 批准号:
    2051026
  • 财政年份:
    2021
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了