Exploring Artificial Intelligence-enhanced Electronic Design Process Logs: Empowering High School Engineering Teachers

探索人工智能增强的电子设计过程日志:赋予高中工程教师权力

基本信息

  • 批准号:
    2119135
  • 负责人:
  • 金额:
    $ 84.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The Engineering Design Process (EDP) is a general theoretical framework often used for teaching engineering, STEM, invention, and even science, particularly in K-12 education. While most EDPs used in education are depicted as linear or circular, true design processes are highly creative, non-linear, and often involve ill-posed problem statements and solution criteria. These traits make it particularly difficult for high school engineering teachers, who tend to skip over key elements of human-centered design, where an engineer takes time to understand the problem through research, interviews, prior literature searches, market analysis, and brainstorming—the steps where diversity of thought and experience are of the most value. In addition, it can be hard to provide students with real-time feedback due to the asynchronous nature of group work and large class sizes, and students may not feel comfortable asking for feedback on incomplete work. This project will develop and pilot an artificial intelligence (AI) enhanced Engineering Design Process Log to help students navigate the design process, provide real-time feedback, and encourage meaningful documentation of each step of the process. This project does not propose to replace teachers with AI; rather, the project will explore a novel approach in which AI systems assist teachers in the creation of instructional modules that adhere to EDP best practices. This project is a collaboration between researchers at Georgia Tech’s College of Computing (GT CoC) and researchers at Georgia Tech’s Center for Education Integrating Science, Mathematics and Computing (CEISMC). This project is a teaching-focused technological innovation, representing an early exploration into AI-enhanced design pedagogy. Specifically, the project will: 1) Improve upon an existing web-based Engineering Design Process Log (EDPL) by engaging in teacher user studies, 2) Design, pilot, and implement an AI-based authoring and tutoring system for teachers to customize feedback for students and for specific projects with domain expertise, 3) Design and provide professional development opportunities for alpha and beta testing teachers, and 4) Assess the impact of an AI-based EDP Log (AI-EDPL) on engineering design pedagogy and classroom practice. The AI-EDPL software system will use concepts initially pioneered for intelligent tutoring systems, but applied to scaffolding the creation of custom, teacher-made instructional materials that adhere to best practices in design process pedagogy assessment. Unlike many other educational domains, engineering design problems vary widely in scope and solution pathways, which means there will not be a one-size-fits-all tutoring system that can provide feedback to students. This project will examine (a) whether artificial intelligence can support and scaffold teachers in the creation of the necessary models and knowledge structures needed to scaffold and support learners, and, (b) what professional development teachers need to be successful in developing these models. A multi-phased approach will be used, using value-sensitive design processes from the field of human computer interaction to develop minimalist functional systems that can be tested with teachers in classrooms. In order for AI to help teachers, who do not have a lot of time to tinker with software, they must be able to express their intentions in natural language, which must be automatically converted into functional approximations of the task models that can be easily edited. This project will build on best practices in design theory and pedagogy, design documentation, design instruction, design assessment, and AI tutoring to create a one-of-a-kind technology suitable for engineering design instruction at the high school level. It represents a first attempt at providing real-time feedback in a computational setting for an open-ended design challenge, and it does so without marginalizing or diminishing the role of the instructor in the engineering classroom.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工程设计过程 (EDP) 是一种通用理论框架,通常用于工程、STEM、发明甚至科学的教学,特别是在 K-12 教育中。虽然教育中使用的大多数 EDP 都被描述为线性或圆形,但真正的设计过程是。高度创造性、非线性,并且经常涉及不适定的问题陈述和解决方案标准,这些特征使得高中工程教师尤其困难,他们往往会跳过以人为本的设计的关键要素,而工程师需要花时间来完成这些要素。通过研究、访谈、先前文献了解问题搜索、市场分析和头脑风暴——思想和经验的多样性最有价值的步骤。此外,由于小组作业的异步性质和大班规模,很难为学生提供实时反馈。学生可能不愿意就未完成的工作寻求反馈,该项目将开发和试点人工智能 (AI) 增强的工程设计过程日志,以帮助学生引导设计过程、提供实时反馈并鼓励对每个过程进行有意义的记录。该项目不建议更换教师。相反,该项目将探索一种新颖的方法,让人工智能系统帮助教师创建符合 EDP 最佳实践的教学模块。该项目是佐治亚理工学院计算机学院 (GT CoC) 的研究人员与佐治亚理工学院科学、数学和计算相结合的教育中心 (CEISMC) 该项目是一项以教学为中心的技术创新,代表了对人工智能增强设计教学法的早期探索。具体来说,该项目将: 1) 改进通过参与教师用户研究,现有基于网络的工程设计过程日志 (EDPL),2) 设计、试点和实施基于人工智能的创作和辅导系统,供教师为学生和具有领域专业知识的特定项目定制反馈,3 ) 为 alpha 和 beta 测试教师设计并提供专业发展机会,以及 4) 评估基于 AI 的 EDP Log (AI-EDPL) 对工程设计教学法和课堂实践的影响 AI-EDPL 软件系统将首先使用概念。为智能先行辅导系统,但应用于支持创建定制的、教师制作的教学材料,这些材料遵循设计过程教学评估中的最佳实践,工程设计问题的范围和解决方案途径差异很大,这意味着不会有任何问题。一个可以向学生提供反馈的通用辅导系统,该项目将研究(a)人工智能是否可以支持和支持教师创建支持和支持学习者所需的必要模型和知识结构,以及, (b) 教师需要什么专业发展为了在这些模型中取得成功,将采用多阶段的方法,使用人机交互领域的价值敏感设计流程来开发可以在课堂上与教师一起测试的简约功能系统,以便人工智能帮助开发。教师没有太多时间修改软件,他们必须能够用自然语言表达自己的意图,这些意图必须自动转换为可以轻松编辑的任务模型的函数近似值。设计理论和最佳实践教学法、设计文档、设计指导、设计评估和人工智能辅导,创造了一种适合高中水平工程设计指导的独一无二的技术,这是在计算中提供实时反馈的首次尝试。设置开放式设计挑战,并且这样做不会边缘化或削弱讲师在工程课堂中的作用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Examining Hard and Soft Skill Prioritization in High School Engineering Education
检查高中工程教育中的硬技能和软技能优先顺序
Problem-solving or Solved Problems: Constricting design challenges in high-school engineering education to avoid (disruptive) failures
解决问题或已解决的问题:限制高中工程教育中的设计挑战以避免(破坏性)失败
  • DOI:
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Belghith, Yasmine;Kim, Julia;Alemdar, Meltem;Moore, Roxanne;Rosen, Jeffrey;Riedl, Mark;Roberts, Jessica
  • 通讯作者:
    Roberts, Jessica
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Riedl其他文献

Creating Suspenseful Stories: Iterative Planning with Large Language Models
创造悬疑故事:利用大型语言模型进行迭代规划
  • DOI:
    10.48550/arxiv.2402.17119
  • 发表时间:
    2024-02-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaige Xie;Mark Riedl
  • 通讯作者:
    Mark Riedl

Mark Riedl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Riedl', 18)}}的其他基金

I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: Future expert work in the age of "black box", data-intensive, and algorithmically augmented healthcare
FW-HTF-RL:协作研究:“黑匣子”、数据密集型和算法增强医疗保健时代的未来专家工作
  • 批准号:
    1928586
  • 财政年份:
    2019
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
  • 批准号:
    1849262
  • 财政年份:
    2019
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
CHS: Small: Scientific Design of Interactive Human Computation Systems
CHS:小型:交互式人类计算系统的科学设计
  • 批准号:
    1525967
  • 财政年份:
    2015
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
CAREER: Combining Crowdsourcing and Computational Creativity to Enable Narrative Generation for Education, Training, and Healthcare
职业:将众包和计算创造力相结合,为教育、培训和医疗保健生成叙事
  • 批准号:
    1350339
  • 财政年份:
    2014
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Continuing Grant
MAJOR: Assistive Artificial Intelligence to Support Creative Filmmaking in Computer Animation
专业:辅助人工智能支持计算机动画中的创意电影制作
  • 批准号:
    1002748
  • 财政年份:
    2010
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant

相似国自然基金

基于YE1-BE3-FNLS编辑人造血干细胞的研究
  • 批准号:
    32371549
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可级联催化和运动变形的人造细胞构建及其在硼中子俘获治疗肿瘤中的研究
  • 批准号:
    82373206
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
光控NO人造细胞的构建及其对黑色素瘤的治疗研究
  • 批准号:
    22374033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
  • 批准号:
    52302085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人造血干细胞的发育异质性解析及体外再生策略
  • 批准号:
    82330006
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目

相似海外基金

Puffins: Exploring how narrative, data science, and artificial intelligence enhance the study of ecology in middle school
Puffins:探索叙事、数据科学和人工智能如何增强中学生态学的学习
  • 批准号:
    2241777
  • 财政年份:
    2023
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Cultivating Tomorrow's Innovators Through Exploring Planetary Images with Artificial Intelligence
合作研究:通过人工智能探索行星图像培养明天的创新者
  • 批准号:
    2314155
  • 财政年份:
    2023
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: STEMEdIPRF: Exploring the use of Artificial Intelligence in Science Communication: Promoting Identity Development and Equitable Student Learning
博士后奖学金:STEMEdIPRF:探索人工智能在科学传播中的使用:促进身份发展和公平的学生学习
  • 批准号:
    2327418
  • 财政年份:
    2023
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Standard Grant
A study on the interaction between innovation and disclosure exploring artificial intelligence techniques
探索人工智能技术的创新与披露之间的相互作用研究
  • 批准号:
    23K01672
  • 财政年份:
    2023
  • 资助金额:
    $ 84.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GENOMICE (Game Exploring Nuances in Offspring to Master Interactions of Chromosome Expression)
GENOMICE(探索后代细微差别以掌握染色体表达相互作用的游戏)
  • 批准号:
    10760456
  • 财政年份:
    2023
  • 资助金额:
    $ 84.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了