CAREER: Enhancing the Robustness of Human-Robot Interactions via Automatic Scenario Generation
职业:通过自动场景生成增强人机交互的鲁棒性
基本信息
- 批准号:2145077
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There is a need for new techniques to assess humans and robots’ interactions at home and in the workplace. Traditionally, human-robot interaction is tested with human subject experiments. While these experiments are necessary to evaluating human-robot interactions, they are often limited in the number of environments and human behaviors that can be observed. Furthermore, it is not well understood how to build robots that account for infrequent and undesirable behaviors found when testing such systems. This Faculty Early Career Development (CAREER) award supports fundamental research to improve human-robot interactions by automatically creating simulated human-robot interaction scenarios that reveal undesirable behaviors, as well as integrating the generated scenarios into the robot’s learning process. Results from this work will provide the field of robotics with a theoretical and experimental tools for allowing the robot to adjust to new and challenging scenarios. Tightly integrated with the research activities, the education plan will introduce scenario generation in robotics education and artificial intelligence competitions to improve students' understanding of robots' capabilities and limitations and inspire them to pursue a career in science, technology, engineering, and mathematics.This project will advance the science of robust, complex human-robot interaction by automatically generating and learning from diverse, challenging and realistic scenarios in simulation. It will investigate computational foundations for the design of quality diversity algorithms that efficiently search the scenario space. It will then develop frameworks that integrate the developed algorithms with generative models to optimize a low-dimensional space of complex and realistic scenarios. The project will close the loop between scenario generation and learning by exploring and characterizing methods for efficiently selecting challenging scenarios to form a curriculum for learning. Dissemination of all developed algorithms through open-source software and workshops will help bring ideas from quality diversity optimization and scenario generation to a wider robotics audience.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
需要新技术来评估人类和机器人在家庭和工作场所的交互。传统上,人机交互是通过人体实验来测试的,虽然这些实验对于评估人机交互是必要的,但它们通常是有限的。此外,目前还不清楚如何构建能够解释测试此类系统时发现的罕见和不良行为的机器人。提升通过自动创建模拟人机交互场景来揭示不良行为,并将生成的场景集成到机器人的学习过程中,这项工作的结果将为机器人领域提供理论和实验工具,以实现人机交互。该教育计划将与研究活动紧密结合,在机器人教育和人工智能竞赛中引入场景生成,以提高学生对机器人能力和局限性的理解,并激励他们从事科学事业。 , 技术,该项目将通过在模拟中自动生成和学习多样化的、具有挑战性的和现实的场景来推进稳健、复杂的人机交互科学。它将研究设计有效搜索的质量多样性算法的计算基础。然后,它将开发将开发的算法与生成模型集成的框架,以优化复杂和现实场景的低维空间。该项目将通过探索和表征有效选择具有挑战性的场景的方法来闭合场景生成和学习之间的循环。形成一个用于传播所有开发的课程。通过开源软件和研讨会的算法将有助于将质量多样性优化和场景生成的想法带给更广泛的机器人受众。该项目得到了机器人学跨部门基础研究计划的支持,由工程理事会共同管理和资助( ENG)和计算机与信息科学与工程(CISE)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Covariance Matrix Adaptation MAP-Annealing
- DOI:10.1145/3583131.3590389
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Matthew C. Fontaine;S. Nikolaidis
- 通讯作者:Matthew C. Fontaine;S. Nikolaidis
pyribs: A Bare-Bones Python Library for Quality Diversity Optimization
- DOI:10.1145/3583131.3590374
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Bryon Tjanaka;Matthew C. Fontaine;David H. Lee;Yulun Zhang;Nivedit Reddy Balam;N. Dennler;Sujay S. Garlanka;Nikitas Dimitri Klapsis;S. Nikolaidis
- 通讯作者:Bryon Tjanaka;Matthew C. Fontaine;David H. Lee;Yulun Zhang;Nivedit Reddy Balam;N. Dennler;Sujay S. Garlanka;Nikitas Dimitri Klapsis;S. Nikolaidis
Deep Surrogate Assisted Generation of Environments
- DOI:10.48550/arxiv.2206.04199
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Varun Bhatt;Bryon Tjanaka;Matthew C. Fontaine;S. Nikolaidis
- 通讯作者:Varun Bhatt;Bryon Tjanaka;Matthew C. Fontaine;S. Nikolaidis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefanos Nikolaidis其他文献
Stefanos Nikolaidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefanos Nikolaidis', 18)}}的其他基金
REU Site: Robotics and Autonomous Systems
REU 网站:机器人和自主系统
- 批准号:
2051117 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: FND: Improving Human-Robot Collaboration on Assembly Tasks by Anticipating Human Actions
NRI:FND:通过预测人类行为来改善装配任务中的人机协作
- 批准号:
2024936 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: INT: Collaborative Research: Buoyancy-assisted Collaborative Robots That are Cheap, Safe, and Never Fall Down.
NRI:INT:协作研究:廉价、安全且永不摔倒的浮力辅助协作机器人。
- 批准号:
2024949 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
彩色图像隐写非对称失真设计与鲁棒性增强方法研究
- 批准号:62302146
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多源异质图表示的鲁棒性增强方法研究
- 批准号:62306011
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多源异构图推荐的鲁棒性增强方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超表面增强型反向散射网络的鲁棒性中继通信研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶TV正则化低秩矩阵重构的深度神经网络鲁棒性增强研究
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
相似海外基金
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Evaluating and enhancing the robustness of artificial systems based on complex network theory
基于复杂网络理论评估和增强人工系统的鲁棒性
- 批准号:
18KT0059 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
WORKSHOP: Enhancing robustness and generalizability in the social and behavioral sciences
研讨会:增强社会和行为科学的稳健性和普遍性
- 批准号:
1647219 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Enhancing Robustness of Gene Regulatory Networks
增强基因调控网络的稳健性
- 批准号:
1515280 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Enhancing the robustness of the immersed interface method for flow simulation
增强流动模拟的浸入界面方法的鲁棒性
- 批准号:
1320317 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Standard Grant