CAREER: Extrusion-based Additive Manufacturing of Sustainable Thermoplastics via Enzyme Encapsulation and Microfluidic Structuring of Hierarchical Composites

职业:通过酶封装和分层复合材料的微流体结构进行基于挤出的可持续热塑性塑料增材制造

基本信息

  • 批准号:
    2144845
  • 负责人:
  • 金额:
    $ 69.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Additive manufacturing (AM) of thermoplastics serves a large and growing market to produce parts for industries such as consumer electronics, automotive, aerospace and medical, etc. As the demand continues to increase, there is a need to advance the science of AM to create processing and materials that not only achieve a balance of performance, efficiency and cost, but especially also address impacts on the environment. This Faculty Early Career Development (CAREER) award supports fundamental research into novel AM processes combining sustainable plastic composite blends with thermally-protected biological components and electrically conductive fillers. The approach will leverage innovations in microfluidic print technologies, which enable precise thermoplastic processing of materials to combine a variety of unique material properties. Once completed, the project will inform materials selection for a variety of performance-driven applications, accelerating widespread adoption and commercial viability of such materials as degradable-by-design plastics and environmental sensors. At its central effort, this project will establish education and outreach activities for a variety of student groups, including those historically underrepresented in these areas of research. In particular, this project will develop interactive hands-on three-dimensional printing experiences for rural high school and tribal college students and integrate additive manufacturing research of sustainable, hierarchical polymers into curricula at Montana State University.The overarching goal of this interdisciplinary research, integrating manufacturing, materials science and chemistry, is to enable novel multi-material thermoplastic composite structures that incorporate functional biologics, such as enzymes, and electrically conductive fillers. There are two research thrusts in this CAREER endeavor. The first is to understand the conditions needed to create additive manufacturing filaments that can successfully encapsulate heat-sensitive biologically derived enzymatic constituents, such that their biological activity is substantially retained upon thermoplastic processing into final composites. The amount of thermal shielding will be quantified by analyzing the environmental degradability of complete composite samples manufactured via microfluidic controls of material extrusions through custom-design print-heads for fused filament fabrications. The second thrust is to explore the processing and properties of electrically-conductive components using the developed methods to hierarchically structure multi-material systems. An innovative microfluidic technique, based on combining materials with precise local structural and thermal control through engineered AM print-heads, will be utilized to better understand the required process conditions. Further, topology optimization and microfluidic modeling will be used in conjunction with experiments to determine processing parameter space. The culmination of these two research efforts will be a successful demonstration of an additively manufactured bio-based passive sensor that biodegrades in response to humidity. This project is jointly funded by the division of Civil, Mechanical and Manufacturing Innovation (CMMI) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热塑性塑料的添加剂制造(AM)为大型且不断增长的市场提供了为消费电子,汽车,航空航天和医疗等行业生产零件。随着需求的不断增加,诸如消费电子产品,汽车,航空航天和医疗等,都需要促进AM的科学来创建加工和材料,这些材料不仅可以实现绩效,效率和成本的平衡,而且要解决环境的影响。这项教师早期职业发展(职业)奖支持了将可持续塑料复合材料混合物与受热保护的生物组件和导电填充剂相结合的新型AM过程的基础研究。该方法将利用微流体打印技术的创新,使材料的精确热塑性处理能够结合各种独特的材料特性。完成后,该项目将为材料选择提供各种绩效驱动的应用,并加速了诸如可降解的塑料和环境传感器等材料的广泛采用和商业可行性。在中心努力下,该项目将为各种学生群体建立教育和外展活动,包括在这些研究领域的历史不足的学生团体。特别是,该项目将为农村高中和部落大学生开发交互式动手三维印刷经验,并将可持续的,等级聚合物的增材制造研究整合到蒙大拿州立大学的课程中。这项跨学科研究的总体目标。这项跨学科研究的总体目标,构建了新型的制造,材料科学和化学结构,以构建新型的组合,以构建新型的组合,以使得构成多工艺型体系,以致构建了构成式化学良好的合并,以构成良好的合并式化学良好的化合物,以构成构建功能,以使得构成了良好的合并式化合物,以构成构建材料的构造,以使得构建了构成材料式的化学构造,以构成型组合式的构造,以构成型组合式化学研究。酶和导电填充剂。这项职业生涯中有两个研究作用。首先是了解创建可以成功封装热敏感生物学衍生的酶成分的添加剂生产丝所需的条件,从而使其生物活性在热塑性加工过程中基本上保留在最终的复合材料中。通过分析通过材料挤出物通过熔融丝制造的定制设计头制造的完全复合样品的完整复合样品的环境降解性,可以量化热屏蔽量的量。第二个力量是使用开发的方法探索电导性组件的处理和性能,以层次结构多物质系统。一种创新的微流体技术,基于将材料与精确的局部结构和热控制通过工程AM打印头组合在一起,将用于更好地了解所需的过程条件。此外,拓扑优化和微流体建模将与实验结合使用以确定处理参数空间。这两项研究工作的高潮将成功地证明了一个基于生物的被动传感器,该传感器对湿度进行了生物降解。该项目由民用,机械和制造创新部(CMMI)共同资助,并建立的计划刺激竞争研究(EPSCOR)。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cecily Ryan其他文献

Role of sodium sulfate in electrical conductivity and structure of lignin-derived carbons
硫酸钠在木质素衍生碳的导电性和结构中的作用
Experimental statistical modeling of tensile properties and flexural stiffness of recycled high-density polyethylene (rHDPE) thermoplastic using response surface methodology (RSM)
使用响应面法 (RSM) 对再生高密度聚乙烯 (rHDPE) 热塑性塑料的拉伸性能和弯曲刚度进行实验统计建模
  • DOI:
    10.1016/j.rinma.2023.100472
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Malyuta;Kirsten L. Matteson;Michael P. Berry;Dilpreet Bajwa;Cecily Ryan
  • 通讯作者:
    Cecily Ryan

Cecily Ryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
  • 批准号:
    52365047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于摩擦挤压诱发躯体感觉反馈的自适应膝下假肢接受腔设计研究
  • 批准号:
    52375224
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于能场辅助的TiAlVCrMo系轻质高熵合金制备及挤压变形行为研究
  • 批准号:
    52373234
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于GP区强韧化的新型低稀土耐腐蚀镁合金设计与快速挤压制备基础
  • 批准号:
    U22A20109
  • 批准年份:
    2022
  • 资助金额:
    255.00 万元
  • 项目类别:
    联合基金项目
基于低温小挤压比的大尺寸高强Mg-15Gd-xZn合金微观组织调控与强化机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High moisture extrusion technology assisted by enzymatic protein-protein crosslinking approach to improve the texture of plant-based meat analalogues
高水分挤出技术辅助酶促蛋白质-蛋白质交联方法改善植物基肉类类似物的质地
  • 批准号:
    2886464
  • 财政年份:
    2023
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Studentship
Mechanistic Understanding of Multi-scale Sintering Behavior Influenced by Anisotropic Particle and Pore Distributions in Extrusion-based Metal Additive Manufacturing
基于挤压的金属增材制造中受各向异性颗粒和孔隙分布影响的多尺度烧结行为的机理理解
  • 批准号:
    2224309
  • 财政年份:
    2023
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Standard Grant
Establishment of the prevention of knee osteoarthritis with early-stage based on the mechanism of dynamics meniscus extrusion by mechanical stress
基于机械应力动态半月板挤压机制建立膝骨关节炎早期预防
  • 批准号:
    23K16541
  • 财政年份:
    2023
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Continuous extrusion of Cu-based material from recycling loop into semi-finished products for sustainable applications.
将铜基材料从回收循环中连续挤压成半成品,以实现可持续应用。
  • 批准号:
    2879504
  • 财政年份:
    2023
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Studentship
Performance enhancement of plastic 3D printer based on analogy of different gravitational fields
基于不同引力场类比的塑料3D打印机性能提升
  • 批准号:
    23K13238
  • 财政年份:
    2023
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了