CAREER: Decoupling electrodeposition from corrosion for precise tuning of metal deposits in high energy batteries

职业:将电沉积与腐蚀解耦,以精确调节高能电池中的金属沉积

基本信息

  • 批准号:
    2143677
  • 负责人:
  • 金额:
    $ 56.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

Electrochemical deposition of reactive metals is the central process in several important clean energy technologies, including high-energy batteries using metallic anodes. Understanding and engineering these electrochemical systems are critical to achieving the Nation’s goal of a zero-carbon emissions future, where grid-scale energy storage can facilitate renewable yet intermittent sources of green energy (e.g., solar, wind) and the transportation sector is increasingly electrified. The project’s objectives to understand and engineer metal electrodeposition for energy storage will generate broad impact for future technologies that benefit society, including electric vehicles, electric-powered flight, and grid-scale energy storage. The project’s education and outreach activities will promote scientific discoveries to the broader community by leveraging informal settings. Such informal settings have been shown to be particularly effective learning environments for underrepresented students in STEM, for whom equitable access to educational opportunities will be provided through the project’s activities. For example, the researcher's YouTube channel will disseminate the project’s results to the general public in an engaging way, raising awareness for the importance of energy research and exciting the future generation of young scientists and engineers. The project’s integrated research and educational plan will lead to energy-dense lithium metal batteries that bring the US closer to achieving decarbonization goals, expand the number of underrepresented students pursuing STEM, and enable a diverse and globally competitive US workforce.This fundamental research project will investigate the nanoscale mechanism of Li metal electrodeposition; the current understanding of which is complicated by the simultaneous formation of a surface corrosion film, the solid electrolyte interphase (SEI). A deeper understanding of these processes will enable high-energy batteries capable of extreme fast charging. The objective is to bridge this gap in understanding by decoupling metal electrodeposition from SEI film formation to study each process independently. The project’s approach will use ultramicroelectrode geometries to enable ultrafast electrodeposition current densities that can outpace electrolyte decomposition rates. State-of-the-art cryogenic electron microscopy techniques will preserve and image the nanoscale interfaces that form. The project’s objectives are to (1) understand and tune electrodeposition morphologies decoupled from surface corrosion/SEI formation, (2) reveal the reaction kinetics of the SEI film, and (3) use these insights to engineer efficient high-energy batteries capable of fast charging. This approach is distinct from past work, which could not decouple these two processes and study them separately from each other. By providing the first images of how Li grows intrinsically without the influence of a corrosion film and quantifying the film’s reaction kinetics, the project’s results will provide significant insights into precisely tuning Li deposition morphology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
反应金属的电化学沉积是几种重要的清洁能源技术的中心过程,包括使用金属阳极的高能量电池。理解和工程这些电化学系统对于实现零碳排放的未来目标至关重要,在该目标中,网格尺度的储能可以固定可再生但间歇性的绿色能源来源(例如太阳能,风能)和运输部门越来越多地电气化。该项目了解和设计用于存储能源的金属电沉积的目标将对有利于社会的未来技术产生广泛的影响,包括电动汽车,电动飞行和网格尺度储能。该项目的教育和外展活动将通过利用非正式环境来促进更广泛的社区的科学发现。对于STEM中代表性不足的学生来说,这种非正式环境已被证明是特别有效的学习环境,通过项目的活动将为他们提供公平的教育机会。例如,研究人员的YouTube频道将以引人入胜的方式将项目的结果传播给公众,从而提高人们对能源研究重要性的认识,并激发了未来的年轻科学家和工程师的未来一代。该项目的综合研究和教育计划将导致能量浓密的锂金属电池,使美国对这些过程的更深入了解将使能够具有极端快速充电的高能电池。目的是通过将金属电沉积从SEI膜形成分解以独立研究每个过程来弥合这一差距。该项目的方法将使用超大型电极几何形状来实现超快电沉积电流密度,从而超过空间电解质分解速率。最先进的低温电子显微镜技术将保留并成像形成的纳米级界面。该项目的目标是(1)理解和调整电死刑形态与表面腐蚀/SEI形成解耦,(2)揭示了SEI膜的反应动力学,(3)使用这些见解来工程师有效的高能电池,能够快速充电。这种方法与过去的工作不同,这无法使这两个过程分离并彼此分开研究。通过提供第一批图像,说明Li在没有腐蚀膜的影响的情况下在本质上生长并量化了胶卷的反应动力学,该项目的结果将为精确调整Li沉积形态提供重大见解。该奖项反映了NSF的法定任务,并通过使用基金会的知识优点和广泛的criperia criperia criperia criperia criperia criperia criptialia revalluation the Collectory Mission。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation
  • DOI:
    10.1038/s41586-023-06235-w
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Xintong Yuan;Bo Liu;M. Mecklenburg;Yuzhang Li
  • 通讯作者:
    Xintong Yuan;Bo Liu;M. Mecklenburg;Yuzhang Li
Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy
通过冷冻电子显微镜对锂固体电解质界面的固氮成像
  • DOI:
    10.1038/s41560-022-01177-5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    56.7
  • 作者:
    Steinberg, Katherine;Yuan, Xintong;Klein, Channing K.;Lazouski, Nikifar;Mecklenburg, Matthew;Manthiram, Karthish;Li, Yuzhang
  • 通讯作者:
    Li, Yuzhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuzhang Li其他文献

Cryogenic-electron Microscopy for Battery Materials
电池材料的低温电子显微镜
What Can Cryo-EM Teach Us About Batteries?
关于电池,冷冻电镜能教会我们什么?
A Design of Robot System for Rapidly Sorting Express Carton with Mechanical Arm Based on Computer Vision Technology
基于计算机视觉技术的机械臂快速分拣快递纸箱机器人系统设计
Summary of Pretreatment of Waste Lithium-Ion Batteries and Recycling of Valuable Metal Materials: A Review
废旧锂离子电池预处理及有价金属材料回收综述
  • DOI:
    10.3390/separations11070196
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Linye Li;Yuzhang Li;Guoquan Zhang
  • 通讯作者:
    Guoquan Zhang
The level of serum carcinoembryonic antigen is a surrogate marker for the efficacy of EGFR-TKIs but is not an indication of acquired resistance to EGFR-TKIs in NSCLC patients with EGFR mutationsm.
血清癌胚抗原水平是 EGFR-TKI 疗效的替代标志物,但并不是 EGFR 突变的 NSCLC 患者对 EGFR-TKI 获得性耐药的指标。
  • DOI:
    10.3892/br.2017.914
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Jingquan Han;Yuzhang Li;Shouqiang Cao;Qing Dong;Guibin Zhao;Xiangyu Zhang;J. Cui
  • 通讯作者:
    J. Cui

Yuzhang Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

中西方稀土供应链“脱钩”的路径、影响与我国应对策略研究
  • 批准号:
    72304190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
技术脱钩背景下基于生态视角的高科技企业平衡创新战略
  • 批准号:
    72372031
  • 批准年份:
    2023
  • 资助金额:
    40.00 万元
  • 项目类别:
    面上项目
工业园区污碳协同脱钩发展路径研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
工业园区污碳协同脱钩发展路径研究
  • 批准号:
    72274103
  • 批准年份:
    2022
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
中美科技脱钩:构建脱钩的测度及评估脱钩对企业创新的影响
  • 批准号:
    72103003
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Decoupling Corrosion of Electrode and Electrolyte in Advanced Batteries
先进电池中电极和电解质的解耦腐蚀
  • 批准号:
    24K17761
  • 财政年份:
    2024
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAS-MNP: Degradation of Plastics in the Environment: Decoupling the Roles of Polymer Type, Material Attributes, and Chemical Additives
CAS-MNP:环境中塑料的降解:解耦聚合物类型、材料属性和化学添加剂的作用
  • 批准号:
    2304991
  • 财政年份:
    2023
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Continuing Grant
A Study on the Effects of Decoupling and Economic Security on Global Activities of Firms
脱钩和经济安全对企业全球活动的影响研究
  • 批准号:
    23H00817
  • 财政年份:
    2023
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characterization of dynamic heterogeneity in polymer ultrathin film systems and investigation of the origin of the decoupling in dynamics
聚合物超薄膜系统动态异质性的表征及动力学解耦起源的研究
  • 批准号:
    23K04853
  • 财政年份:
    2023
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decoupling Hydrogel Stiffness and Diffusivity for Hematopoietic Stem Cell Culture and Differentiation
用于造血干细胞培养和分化的水凝胶刚度和扩散率的解耦
  • 批准号:
    10647478
  • 财政年份:
    2023
  • 资助金额:
    $ 56.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了