CAREER: Targeted Catalytic Reduction of Persistent Organohalogens in Wastewater using a Novel V2C MXene-Imprinted Polymer Composite
职业:使用新型 V2C MXene 印迹聚合物复合材料有针对性地催化减少废水中的持久性有机卤素
基本信息
- 批准号:2143301
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Organohalogens such as polychlorinated biphenyls (PCBs) and per- and polyfluoroalkyl substances (PFAS) pose significant environmental and human health risks due to their toxicity, chemical stability, and persistence in the environment. The effective removal and destruction of organohologen pollutants by water treatment will require novel and targeted approaches as these compounds are often present at very dilute concentrations in drinking water sources. Treatment technologies which generate reactive solvated electrons (SE) are promising approaches to degrade organohalogens in aqueous solutions via chemical reduction. However, the efficacy of a SE-based water treatment process is hindered by competing reactions with co-occurring contaminants and interfering reactions between solvated electrons and dissolved organic/inorganic species present in drinking water sources. The overarching goal of this CAREER project is to design, synthesize, characterize, and evaluate new composite media capable of targeted separation and catalytic reductive dehalogenation to address the limitations of current SE-based water treatment processes. The successful completion of this project will benefit society through the generation of new water treatment media and fundamental knowledge to advance the development and deployment of more efficient and cost-effective technologies to remove and destroy organohalogen pollutants from drinking water sources. Further benefits to society will be achieved through student education and training including the mentoring of a graduate student and five undergraduate students at the University of Washington.Organohalogens such as PCBs and PFAS are extremely stable in natural and engineered aquatic systems. They are also resistant to degradation using conventional biological and chemical water treatment processes. The generation of solvated electrons in aqueous solutions is a promising approach to cleave carbon-halide bonds and facilitate organohalogen degradation/destruction in contaminated drinking water sources. However, solvated electrons (SE) are easily scavenged and may not react with the targeted organohalogen pollutants as they may be consumed by other co-contaminants and dissolved organic/inorganic species which often exist in drinking water sources. This CAREER project will address the critical limitations of current SE-based water treatment processes for organohalogen removal. To advance this goal, the Principal Investigator (PI) will explore the development of new composite media consisting of 1) molecularly imprinted polymer shells that can selectively extract organohalogens and 2) vanadium carbide catalytic cores with demonstrated potential to generate solvated electrons and degrade organohalogens. The specific objectives of the research include: (1) media design, synthesis, and characterization, (2) measurements of media sorption capacity and selectivity, (3) experimental investigations of media catalytic activity, (4) evaluation of media performance in complex water matrices in the presence of competing dissolved organic/inorganic species; and (5) evaluation of media reusability. The successful completion of this project has the potential for transformative impact through the generation of fundamental knowledge to advance the development and deployment of more efficient and cost-effective media to remove organohalogen contaminants from drinking water sources. To implement the educational and training goals of this CAREER project, the PI will lead a newly developed seminar course for senior-level undergraduate and graduate students about organohalogen properties, exposure, toxicity, and remediation. Additionally, the PI and her students plan to partner with the Duwamish Valley Youth Corps to design a culturally appropriate workshop outlining unique organohalogen exposure pathways and risks closely associated with indigenous lifestyles including subsistence and dietary practices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)的全部或部分资助的。诸如多氯联苯二苯基(PCBS)以及每个二苯基的异生原成果以及毒性和多氟烷基物质(PFAS)构成了由于其毒性,化学稳定性以及环境的巨大环境和人类健康风险。通过水处理污染物的有效去除和破坏将需要新颖的方法和靶向方法,因为这些化合物通常在饮用水源中以非常稀释的浓度存在。产生反应性溶剂化电子(SE)的处理技术是通过化学还原在水溶液中降解有机热量的有前途的方法。但是,基于SE的水处理过程的疗效受到了与污染物的共同污染物的竞争反应,并在饮用水源中存在的溶剂化电子和溶解的有机/无机物种之间的反应。该职业项目的总体目标是设计,合成,表征和评估能够针对靶向分离和催化还原的脱核化的新复合媒体,以解决当前基于SE的水处理过程的局限性。该项目的成功完成将通过产生新的水处理媒体和基本知识来使社会受益,从而推进开发和部署更有效,更具成本效益的技术,以清除和破坏饮用水源中的有机热污染物。将通过学生的教育和培训来实现社会的进一步好处,包括在华盛顿大学的一名研究生和五个本科生的指导。在天然和工程的水上系统中,PCB和PFA等Organohagens(例如PCB和PFA)非常稳定。它们还使用常规生物学和化学水处理过程对降解具有抗性。水溶液中溶剂化的电子的产生是一种裂解碳hal键键的有前途的方法,并促进了受污染的饮用水源中的有机脂蛋白降解/破坏。但是,溶剂化的电子(SE)很容易被清除,并且可能不会与靶向有机体污染物反应,因为它们可能被其他共同抗激素和溶解的有机/无机物种所消耗,而这些物种通常存在于饮用水源中。该职业项目将解决当前基于SE的水处理过程的关键局限性。为了促进这一目标,首席研究员(PI)将探索包括1)可以选择性提取有机脂蛋白的分子烙印的聚合物壳的新复合培养基的开发,以及2)碳化物碳化物催化核心,具有产生溶剂化的电子和去降解的电子和脱脂的细胞元素的潜力。研究的特定目标包括:(1)媒体设计,合成和表征,(2)测量媒体吸附能力和选择性的测量,(3)培养基催化活性的实验研究,(4)在存在竞争性溶解的有机/无机物种的情况下,在存在复杂水基质中媒体性能评估了复杂水基质中的媒体性能; (5)评估媒体可重复性。该项目的成功完成,通过产生基本知识来推动开发和部署更有效,更具成本效益的媒体,从而从饮用水源中去除有机脂质污染物,从而有可能产生变革性的影响。为了实施该职业项目的教育和培训目标,PI将领导新开发的研讨会课程,针对高级本科生和研究生,介绍有关有机物原理,暴露,毒性和补救措施。此外,PI和她的学生计划与Duwamish Valley青年军团合作,设计一个适当的文化研讨会,概述了独特的有机呼气曝光途径和与土著生活方式紧密相关的风险,包括生存和饮食习惯,包括NSF的法定任务,并通过评估了Intellitia的支持,这反映了NSF的法定任务,并反映了概念的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Ray其他文献
A unified compiler backend for distributed, cooperative heterogeneous execution
用于分布式、协作异构执行的统一编译器后端
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jessica Ray - 通讯作者:
Jessica Ray
Correlation of glomerular histomorphometry changes with spatially resolved transcriptomic profiles in diabetic nephropathy
糖尿病肾病肾小球组织形态变化与空间分辨转录组谱的相关性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ahmed Naglah;Sayat Mimar;Anindya S. Paul;Ricardo Melo Ferreira;Avi Z Rosenberg;Seung Seok Han;Jessica Ray;Michael T. Eadon;P. Sarder - 通讯作者:
P. Sarder
Screening and linkage to care for hepatitis C among inpatients in Georgia's national hospital screening program
- DOI:
10.1016/j.ypmed.2020.106153 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:
- 作者:
Shaun Shadaker;Muazzam Nasrullah;Amiran Gamkrelidze;Jessica Ray;Lia Gvinjilia;Tinatin Kuchuloria;Maia Butsashvili;Vladimer Getia;David Metreveli;Maia Tsereteli;Tengiz Tsertsvadze;Ruth Link-Gelles;Alexander J. Millman;Aleksandre Turdziladze;Francisco Averhoff - 通讯作者:
Francisco Averhoff
The MIT-LL/AFRL IWSLT-2013 MT system
MIT-LL/AFRL IWSLT-2013 机器翻译系统
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Michaeel Kazi;Michael Coury;Elizabeth Salesky;Jessica Ray;Wade Shen;Terry P. Gleason;Tim Anderson;Grant Erdmann;Lane Schwartz;Brian M. Ore;Raymond E. Slyh;Jeremy Gwinnup;Katherine Young;M. Hutt - 通讯作者:
M. Hutt
Regional impacts of agricultural land use history on forest vegetation and soils: Comparing primary and post-agricultural forests in Northern New Jersey
- DOI:
10.1016/j.foreco.2023.121427 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Jay F. Kelly;Jessica Ray - 通讯作者:
Jessica Ray
Jessica Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Ray', 18)}}的其他基金
Ferrate (Fe(VI))-Coated Sand Media for Simultaneous Oxidation of Organic Contaminants and Adsorption of Trace Metals in Water
高铁酸盐 (Fe(VI)) 包覆砂介质可同时氧化有机污染物并吸附水中的痕量金属
- 批准号:
2242483 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Planning: Track 1: Beyond Recruitment: Engaging Allies to Foster Black Junior Environmental Engineering Faculty Success
合作研究:规划:轨道 1:超越招聘:与盟友合作,促进黑人初级环境工程教师的成功
- 批准号:
2232537 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
草酸二乙酯加氢缩醛化制1,1-二乙氧基乙烷催化剂的构建及过程机制研究
- 批准号:22378203
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
顺次吸附法构建双金属合金粒子用于双中心催化的CO2高效转化过程
- 批准号:22372054
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
光致电子存储耦合过氧化物酶机制构筑高效h-WO3/CTFs仿生类囊体异质结全天候光催化剂及其应用
- 批准号:22376018
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
Bi2O3/Pt/TiO2反向串联肖特基结及其对Cr(VI)废水的光催化性能研究
- 批准号:22372085
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
赤泥制备表面重构Fe3O4催化剂及其高温水煤气变换增效机制研究
- 批准号:52300175
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Carbonic Anhydrase IX Acts as a Novel CO2/HCO3- Sensor and Protects the Pulmonary Endothelial Barrier from Acidosis
碳酸酐酶 IX 作为新型 CO2/HCO3- 传感器并保护肺内皮屏障免受酸中毒的影响
- 批准号:
10678442 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Investigating the role of GAPDHS in melanoma metabolism and metastasis
研究 GAPDHS 在黑色素瘤代谢和转移中的作用
- 批准号:
10643669 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Molecular Mechanisms of PTEN and USP7 Regulation
PTEN和USP7调控的分子机制
- 批准号:
10546571 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Molecular Mechanisms of PTEN and USP7 Regulation
PTEN和USP7调控的分子机制
- 批准号:
10576979 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Molecular Mechanisms of PTEN and USP7 Regulation
PTEN和USP7调控的分子机制
- 批准号:
10019574 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别: