CAREER: Fast-Rate Manufacturing of Thermoplastic Polymer Composites with Tailored Microstructure and Performance

职业:快速制造具有定制微观结构和性能的热塑性聚合物复合材料

基本信息

  • 批准号:
    2143286
  • 负责人:
  • 金额:
    $ 57.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will support research that contributes to the development of fast-rate manufacturing of high-performance thermoplastic composites with enhanced properties, promoting the US manufacturing science and technology. High-performance thermoplastic composites are emerging in industries to replace metals as these composites offer light weighting, outstanding mechanical properties, chemical stability, and manufacturability within few minutes via thermoforming. However, in fast-rate processes with high cooling rates, there is not sufficient time for the polymer to form long chain orders (crystals) that in turn reduces the crystallinity level. High crystallinity is required for improved stiffness and strength; however, lower crystallinity is desirable to improve toughness. These competing properties can be optimized by control of the detailed structure of the polymer. This grant supports fundamental research that fills the knowledge gap needed to engineer the thermoplastic composite crystallinity during processing to achieve concurrently high stiffness, strength and toughness. Nanomaterials (NMs) are used to control the crystallinity without the use of hazardous solvents, promoting the scalability. The research accelerates the manufacturing of next generation of composites with reduced weight and increased strength and toughness that benefits the US economy and national security by equipping U.S. automotive, aerospace and marine industries with a scalable and fast-rate manufacturing technique. The interdisciplinary nature of this research provides unique opportunities to train the next generation of highly skilled engineers and scientists in STEM fields especially from women and underrepresented minority groups that further enhances the diversification of the US manufacturing workforce.Optimized composite mechanical properties achieved during fast-rate manufacturing of semicrystalline polymer composites require engineering the crystalline morphology. This research will enable alternative capabilities in tailoring the microstructure of semicrystalline composites at multiple length scales during composite processing. Nanomaterials consisting of cellulose nanocrystals-graphene nanoplatelets are used to synergistically reinforce and create a hierarchical crystalline architecture. This project will generate new information by bridging the knowledge gap in the evolution of crystalline-amorphous domains from molecular bonds and forces, their translation to interfacial and interlaminar properties, and their deformation under service load. The research uses in-operando X-ray scattering and in-situ microscopy complemented by density functional theory and molecular dynamics simulations to establish the molecular interactions-semicrystalline microstructure-property relationship. The research also addresses the damage transformation from molecular bonds dissociation to delamination.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师的早期职业发展(职业)赠款将支持研究,有助于发展具有增强属性的高性能热塑性复合材料,从而促进了美国的制造科学和技术。高性能热塑性复合材料在行业中出现了,以取代金属,因为这些复合材料通过热形式在几分钟内提供了轻巧的权重,出色的机械性能,化学稳定性和生产性。但是,在较高冷却速率的快速速度过程中,聚合物没有足够的时间形成长链订单(晶体),从而降低了结晶度。需要高结晶度才能提高刚度和强度;但是,较低的结晶度是可取的,以改善韧性。可以通过控制聚合物的详细结构来优化这些竞争性能。该赠款支持基础研究,填补了在加工过程中设计热塑性复合结晶所需的知识差距,以达到同时高的刚度,强度和韧性。纳米材料(NMS)用于控制结晶度,而无需使用危险溶剂,从而促进可伸缩性。这项研究通过为美国汽车,航空航天和海洋工业提供了可扩展和快速速度的制造技术,加速了重量减轻,强度和韧性的下一代复合材料的制造。这项研究的跨学科性质为培训STEM领域的高科技工程师和科学家提供了独特的机会,尤其是女性和人为代表性不足的少数群体,进一步增强了美国制造业劳动力的多样化。优化的复合机械性能在快速生产的半晶体晶体组合物组合材料的快速生产过程中需要机械组合材料的晶体工具,需要进行晶体式的晶体学文学术。这项研究将使在复合处理过程中以多​​个长度尺度定制半晶复合材料的微观结构来实现替代能力。由纤维素纳米晶晶格纳米平板组成的纳米材料用于协同增强和创建分层晶体结构。该项目将通过弥合从分子键和力,将其转换为界面和层间特性的晶体无汤结构域的发展中的知识差距来产生新信息,并将其转换为界面和层间特性及其在使用负载下的变形。该研究使用密度功能理论和分子动力学模拟补充的X射线内X射线散射和原位显微镜,以建立分子相互作用 - 良性晶体晶体微结构 - 结构 - 培训关系。这项研究还解决了从分子键解离到分层的损害转变。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fundamentals of Crystalline Evolution and Properties of Carbon Nanotube-Reinforced Polyether Ether Ketone Nanocomposites in Fused Filament Fabrication
  • DOI:
    10.1021/acsami.3c01307
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Mia Carrola;Hamed Fallahi;Hilmar Koerner;L. M. Pérez;A. Asadi
  • 通讯作者:
    Mia Carrola;Hamed Fallahi;Hilmar Koerner;L. M. Pérez;A. Asadi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Asadi其他文献

Influence of time-dependent damage on creep of multidirectional polymer composite laminates
  • DOI:
    10.1016/j.compositesb.2010.12.003
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amir Asadi;J. Raghavan
  • 通讯作者:
    J. Raghavan

Amir Asadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Asadi', 18)}}的其他基金

Cellulose Nanocrystal-enabled Manufacturing of Carbon Nanotube/Carbon fiber Polymer Composites
纤维素纳米晶制造碳纳米管/碳纤维聚合物复合材料
  • 批准号:
    1930277
  • 财政年份:
    2019
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Standard Grant

相似国自然基金

基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
使用FAST开展河外中性氢吸收线普查
  • 批准号:
    12373011
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
钢渣粉地聚物超高性能混凝土密实强化与快速胶凝机理
  • 批准号:
    52378230
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Preventing Weight Gain and Diabetes in People with HIV in South Africa
预防南非艾滋病毒感染者体重增加和糖尿病
  • 批准号:
    10668540
  • 财政年份:
    2020
  • 资助金额:
    $ 57.84万
  • 项目类别:
Preventing Weight Gain and Diabetes in People with HIV in South Africa
预防南非艾滋病毒感染者体重增加和糖尿病
  • 批准号:
    10079619
  • 财政年份:
    2020
  • 资助金额:
    $ 57.84万
  • 项目类别:
Preventing Weight Gain and Diabetes in People with HIV in South Africa
预防南非艾滋病毒感染者体重增加和糖尿病
  • 批准号:
    10415167
  • 财政年份:
    2020
  • 资助金额:
    $ 57.84万
  • 项目类别:
Preventing Weight Gain and Diabetes in People with HIV in South Africa
预防南非艾滋病毒感染者体重增加和糖尿病
  • 批准号:
    10239235
  • 财政年份:
    2020
  • 资助金额:
    $ 57.84万
  • 项目类别:
Optical imaging of tissue properties to guide bowel resection and anastomosis
组织特性的光学成像指导肠切除和吻合
  • 批准号:
    8910137
  • 财政年份:
    2015
  • 资助金额:
    $ 57.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了