CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems

职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性

基本信息

  • 批准号:
    2143124
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Minimizing the area functional is one of the most famous examples of geometric variational problems in mathematics and it has had a major impact both in mathematics and in physics. However, for several natural phenomena, the area functional is only a first approximation. In order to capture microstructures, most models in the sciences use directionally dependent functionals, referred to as anisotropic energies. Ever since the introduction of anisotropic energies by Gibbs in the 19th century to model crystals, they have been extensively applied in material sciences and engineering, motivating seminal works in geometric analysis. However, since anisotropic energies are not invariant under translations and rotations, they don’t enjoy the conservation laws of the area functional, which makes them significantly more complicated to study. The PI will advance the anisotropic minimal surfaces theory. Understanding existence, regularity, uniqueness and stability of solutions to anisotropic geometric variational problems plays a major role in analysis, geometry, topology and physics. The PI will also conduct vertically integrated educational activities tied with the research activities. In particular, undergraduate and graduate students will be exposed to the problems and techniques of this project via the organization of seminars, conferences, and a summer school.The PI will study existence, regularity, uniqueness and stability properties of anisotropic minimal surfaces. The existence of anisotropic minimal surfaces in Riemannian manifolds will require extending the min-max theory. In order to determine the regularity of anisotropic minimal surfaces, the PI will study the related geometric nonlinear elliptic PDEs. In addition to the stationary configurations, this research will shed light on the anisotropic Brakke flow and its approximation, through the analysis of the related parabolic PDEs. This project will also address the uniqueness of critical points of the anisotropic isoperimetric problem and investigate the stability properties of the Wulff shapes. Furthermore, part of this research will be devoted to optimal transport, with an emphasis on the regularity and stability properties of branching dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最小化面积泛函是数学中最著名的几何变分问题的例子之一,它对数学和物理学都产生了重大影响。然而,对于一些自然现象,面积泛函只是一个初步近似。为了捕捉微观结构,科学中的大多数模型都使用方向相关的泛函,称为各向异性能量,自从吉布斯在 19 世纪引入各向异性能量来模拟晶体以来,它们已广泛应用于材料科学。然而,由于各向异性能量在平移和旋转下不是不变的,因此它们不符合面积泛函守恒定律,这使得它们的研究变得更加复杂。各向异性表面理论。了解各向异性最小几何变分问题解的存在性、规律性、唯一性和稳定性在分析、几何、拓扑和物理学中发挥着重要作用。PI 还将开展与研究活动相关的垂直整合教育活动。特别是,本科生和研究生将通过组织研讨会、会议和暑期学校来接触该项目的问题和技术。PI将研究各向异性最小曲面的存在性、规律性、唯一性和稳定性。黎曼流形中各向异性最小曲面的研究需要扩展最小-最大理论,为了确定各向异性最小曲面的正则性,PI 除了研究相关的几何非线性椭圆偏微分方程之外。在静态配置中,本研究将通过分析相关抛物线偏微分方程来阐明各向异性 Brakke 流及其近似。该项目还将解决各向异性等周问题的临界点的唯一性,并研究 Wulff 形状的稳定性特性。此外,该研究的一部分将致力于最佳运输,重点是分支动力学的规律性和稳定性。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient joint object matching via linear programming
通过线性规划进行高效的关节对象匹配
  • DOI:
    10.1007/s10107-023-01932-w
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    De Rosa, Antonio;Khajavirad, Aida
  • 通讯作者:
    Khajavirad, Aida
Regularity for graphs with bounded anisotropic mean curvature
具有有界各向异性平均曲率图的正则性
  • DOI:
    10.1007/s00222-022-01129-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    De Rosa, Antonio;Tione, Riccardo
  • 通讯作者:
    Tione, Riccardo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antonio De Rosa其他文献

A direct approach to the anisotropic Plateau problem
解决各向异性高原问题的直接方法
  • DOI:
    10.1515/acv-2016-0057
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Camillo De Lellis;Antonio De Rosa;Francesco Ghiraldin
  • 通讯作者:
    Francesco Ghiraldin
Improved stability of optimal traffic paths
提高最佳交通路径的稳定性
On the power of linear programming for K-means clustering
论 K 均值聚类线性规划的威力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio De Rosa;Aida Khajavirad
  • 通讯作者:
    Aida Khajavirad
Existence Results for Minimizers of Parametric Elliptic Functionals
参数椭圆泛函极小化的存在性结果
  • DOI:
    10.1007/s12220-019-00165-8
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guido De Philippis;Antonio De Rosa;Francesco Ghiraldin
  • 通讯作者:
    Francesco Ghiraldin
The anisotropic min‐max theory: Existence of anisotropic minimal and CMC surfaces
各向异性最小-最大理论:各向异性最小表面和 CMC 表面的存在

Antonio De Rosa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antonio De Rosa', 18)}}的其他基金

Anisotropic Energy Functionals in Geometric Analysis
几何分析中的各向异性能量泛函
  • 批准号:
    2112311
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Anisotropic Energy Functionals in Geometric Analysis
几何分析中的各向异性能量泛函
  • 批准号:
    1906451
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

一类Keller-Segel模型稳态解的存在性及稳定性
  • 批准号:
    12301243
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
若干经典力学问题中的存在性、稳定性及其相关问题研究
  • 批准号:
    12371186
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
两类非线性椭圆方程组解的存在性研究
  • 批准号:
    12301134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
存在任意相关性的假设检验合并方法及其应用研究
  • 批准号:
    12301345
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
几类超临界非线性椭圆问题解的存在性与渐近行为
  • 批准号:
    12371109
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目

相似海外基金

Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
  • 批准号:
    RGPIN-2019-05410
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
  • 批准号:
    RGPIN-2019-05410
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Existence and Regularity of Solutions to Variational Problems in Geometric Analysis
职业:几何分析中变分问题解的存在性和规律性
  • 批准号:
    2147439
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
  • 批准号:
    RGPIN-2019-05410
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
  • 批准号:
    RGPIN-2019-05410
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了