Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models

合作研究:高维时空过程模型的统计推断

基本信息

  • 批准号:
    2113779
  • 负责人:
  • 金额:
    $ 12.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Spatial data science and other emerging technologies related to Geographic Information Systems are increasingly conspicuous in scientific discoveries. Scientists in a variety of disciplines today have unprecedented access to massive spatial and temporal databases comprising high resolution remote sensed measurements. Statistical modeling and analysis for such data need to account for spatial associations and variations at multiple levels while attempting to recognize underlying patterns and potentially complex relationships. Traditional statistical hypothesis testing is no longer adequate for these scientific problems and statisticians are increasingly turning to specialized methods for analyzing complex spatial-temporal data. However, there continue to remain substantial theoretical and methodological bottlenecks with regard to the interpretation of statistical models. This project will address these problems by developing probabilistic machine learning tools for spatial-temporal Big Data that can have far-reaching public health, economic, environmental, and scientific implications. Several innovations in statistical theory, methodologies and computational algorithms are envisioned that will inform basic science and policy questions arising in diverse disciplines using geographic information sciences. Key educational components include dissemination of technologies across the scientific communities including data scientists, engineers, foresters, ecologists, and climate scientists. The Principal Investigators will train the next generation of data scientists through dissemination efforts for graduate students in STEM fields. The PIs aim to blend innovative theory, methods and applications to advance knowledge of spatial-temporal stochastic processes with an emphasis on their properties for high-dimensional inference. This domain of spatial statistics has witnessed a burgeoning of models and methods for Big Data analysis. New classes of models have emerged from the judicious use of directed acyclic graphs (DAGs) that are being applied to massive datasets comprising several millions of spatiotemporal coordinates. Theoretical explorations envisioned in this project will focus upon statistical inference on the process parameters and the underlying spatial process. The PIs intend to perform rigorous investigations into statistical inference for high-dimensional spatio-temporal processes to derive micro-ergodic parameters for such models that will be consistently estimable and, at the same time, yield consistent predictive inference. The PIs will develop new methodologies that cast high-dimensional stochastic processes into computationally practicable frameworks by embedding graphical Gaussian processes within hierarchical frameworks for jointly modeling highly multivariate spatial data. Innovative statistical theory and methods will be developed and used to construct sparsity-inducing graphical spatio-temporal models to accommodate massive numbers of outcomes and capture complex dependencies among variables across massive numbers of locations. The planned theoretical explorations into the inferential properties of newly emerging scalable spatio-temporal processes will produce novel statistical contributions. The PIs will provide probability-based uncertainty quantification and will substantially enhance the understanding of physical and natural processes underlying various problems in the physical, environmental and biomedical sciences and in public health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空间数据科学和其他与地理信息系统相关的新兴技术在科学发现中日益引人注目。如今,各个学科的科学家可以前所未有地访问包含高分辨率遥感测量结果的海量空间和时间数据库。此类数据的统计建模和分析需要考虑多个级别的空间关联和变化,同时尝试识别潜在的模式和潜在的复杂关系。传统的统计假设检验不再足以解决这些科学问题,统计学家越来越多地转向专门的方法来分析复杂的时空数据。然而,在统计模型的解释方面仍然存在重大的理论和方法瓶颈。该项目将通过开发用于时空大数据的概率机器学习工具来解决这些问题,这些工具可能对公共卫生、经济、环境和科学产生深远的影响。预计统计理论、方法论和计算算法方面的几项创新将为使用地理信息科学的不同学科中出现的基础科学和政策问题提供信息。关键的教育内容包括在科学界(包括数据科学家、工程师、林务员、生态学家和气候科学家)传播技术。首席研究员将通过对 STEM 领域研究生的传播工作来培训下一代数据科学家。 PI 旨在融合创新理论、方法和应用,以推进时空随机过程的知识,重点关注其高维推理特性。空间统计领域见证了大数据分析模型和方法的蓬勃发展。有向无环图 (DAG) 的明智使用催生了新型模型,这些模型被应用于包含数百万个时空坐标的海量数据集。该项目设想的理论探索将集中于过程参数和潜在空间过程的统计推断。 PI 打算对高维时空过程的统计推断进行严格的调查,以便为此类模型导出微遍历参数,这些参数将始终可估计,同时产生一致的预测推断。 PI 将开发新的方法,通过将图形高斯过程嵌入分层框架中,将高维随机过程转化为计算上可行的框架,以联合建模高度多元的空间数据。将开发创新的统计理论和方法,并用于构建稀疏性图形时空模型,以适应大量结果并捕获大量位置的变量之间的复杂依赖关系。计划对新兴可扩展时空过程的推理特性进行的理论探索将产生新的统计贡献。 PI 将提供基于概率的不确定性量化,并将大大增强对物理、环境和生物医学科学以及公共卫生领域各种问题背后的物理和自然过程的理解。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hidden symmetries and limit laws in the extreme order statistics of the Laplace random walk
拉普拉斯随机游走极序统计中的隐藏对称性和极限定律
  • DOI:
    10.1214/22-aop1572
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pitman, Jim;Tang, Wenpin
  • 通讯作者:
    Tang, Wenpin
One-dependent colorings of the star graph
星图的一相关着色
  • DOI:
    10.1214/22-aap1920
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liggett, Thomas M.;Tang, Wenpin
  • 通讯作者:
    Tang, Wenpin
On identifiability and consistency of the nugget in Gaussian spatial process models
高斯空间过程模型中块金的可识别性和一致性
Exploratory HJB Equations and Their Convergence
探索性 HJB 方程及其收敛性
  • DOI:
    10.1137/21m1448185
  • 发表时间:
    2021-09-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenpin Tang;Y. Zhang;X. Zhou
  • 通讯作者:
    X. Zhou
McKean–Vlasov equations involving hitting times: Blow-ups and global solvability
涉及击球时间的 McKean-Vlasov 方程:爆炸和全局可解性
  • DOI:
    10.1214/23-aap1999
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bayraktar, Erhan;Guo, Gaoyue;Tang, Wenpin;Zhang, Yuming Paul
  • 通讯作者:
    Zhang, Yuming Paul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenpin Tang其他文献

Continuous paths in Brownian motion and related problems
布朗运动中的连续路径及相关问题
  • DOI:
    10.1070/rm1989v044n02abeh002050
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Wenpin Tang
  • 通讯作者:
    Wenpin Tang
Fixed-Domain Inference for Gausian Processes with Mat´ern Covariogram on Compact Riemannian Manifolds
紧致黎曼流形上的马特恩协变函数高斯过程的固定域推理
  • DOI:
    10.17863/cam.35660
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Didong Li;Wenpin Tang;Sudipto Banerjee
  • 通讯作者:
    Sudipto Banerjee
The convergence rate of vanishing viscosity approximations for mean field games
平均场博弈的消失粘度近似的收敛速度
  • DOI:
  • 发表时间:
    2023-03-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenpin Tang;Y. Zhang
  • 通讯作者:
    Y. Zhang
Stability of shares in the Proof of Stake Protocol -- Concentration and Phase Transitions
权益证明协议中股份的稳定性——集中和相变
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenpin Tang
  • 通讯作者:
    Wenpin Tang
Consistency of the Buckley-Osthus model and the hierarchical preferential attachment model
Buckley-Osthus模型与层次优先依恋模型的一致性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Guo;Fengmin Tang;Wenpin Tang
  • 通讯作者:
    Wenpin Tang

Wenpin Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenpin Tang', 18)}}的其他基金

Stochastic Models with Random Times: Long-Time Behavior and Large Population Limit
具有随机时间的随机模型:长时间行为和大群体限制
  • 批准号:
    2206038
  • 财政年份:
    2022
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant
Stochastic Models with Random Times: Long-Time Behavior and Large Population Limit
具有随机时间的随机模型:长时间行为和大群体限制
  • 批准号:
    2206038
  • 财政年份:
    2022
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄河流域城市大气污染和生态韧性时空演变及空间统计关系研究
  • 批准号:
    12361108
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
复发事件纵向数据的统计分析方法及应用研究
  • 批准号:
    82373679
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
潜在威胁小行星热物理特性统计特征研究
  • 批准号:
    12303066
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319593
  • 财政年份:
    2023
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
  • 批准号:
    2228681
  • 财政年份:
    2023
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了