Estimation of Functionals of High-Dimensional Parameters of Statisical Models

统计模型高维参数泛函的估计

基本信息

  • 批准号:
    2113121
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Estimation of low-dimensional features of high-dimensional parameters is an important subject in contemporary statistical analysis of complex, high-dimensional data. While information-theoretic limitations often make impossible the reliable estimation of the whole unknown parameter due to its high dimensionality, estimation of low-dimensional features could be done efficiently with much faster error rates, common in classical statistics. Such problems often occur in applications, in particular, when the unknown parameter is a large matrix such as the density matrix of a quantum system, and the features of interest are various spectral characteristics of such matrices. Despite the fact that these problems have been studied for many years, there are few general approaches to statistical estimation of functionals representing the features of interest. The main goal of this project is to study functional estimation problem in a general mathematical framework and to develop general estimation methods as well as a comprehensive theory showing how the error rates in functional estimation depend on the underlying properties of the target functional such as its smoothness. The project provides new opportunities for training graduate students in the areas of high-dimensional statistics, in particular, by developing graduate level courses and seminars. The main focus of the project is on the development of a higher order bias reduction method (bootstrap chain bias reduction) in estimation of smooth functionals of unknown high-dimensional parameter of statistical model. It is based on iterative bootstrap and it could be viewed as a method of approximate solution of certain integral equations on high-dimensional parameter spaces. In the case of high-dimensional Gaussian models, this method yields estimators of smooth functionals with optimal error rates. This research project will study the properties of such estimators for a variety of important high-dimensional statistical models, including log-concave models, models on manifolds, sparse models and density matrix estimation models in quantum statistics. The goal is to determine minimax optimal error rates in functional estimation and to study the phase transition between fast parametric and slow nonparametric rates depending on the degree of smoothness of the functional and complexity parameters of the problem. This requires solving a number of challenging analytic and probabilistic problems, including the study of approximation of bootstrap Markov chains by superpositions of independent stochastic processes (random homotopies), the development of high-dimensional normal approximation and coupling methods as well as of concentration bounds for statistical estimators. The project will result in much deeper understanding of functional estimation problems in high dimensions and in the development of a variety of new probabilistic tools in high-dimensional statistical inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维参数的低维特征估计是当代复杂高维数据统计分析的一个重要课题。虽然由于信息论的限制,由于其高维性,通常无法可靠地估计整个未知参数,但低维特征的估计可以以更快的错误率有效地完成,这在经典统计学中很常见。此类问题在应用中经常发生,特别是当未知参数是一个大矩阵(例如量子系统的密度矩阵)时,并且感兴趣的特征是此类矩阵的各种光谱特征。尽管这些问题已经研究了很多年,但对代表感兴趣特征的泛函进行统计估计的通用方法却很少。该项目的主要目标是在通用数学框架中研究函数估计问题,并开发通用估计方法以及显示函数估计中的错误率如何取决于目标函数的基本属性(例如其平滑度)的综合理论。该项目为高维统计领域的研究生培训提供了新的机会,特别是通过开发研究生水平的课程和研讨会。 该项目的主要重点是开发一种高阶偏差减少方法(引导链偏差减少)来估计统计模型的未知高维参数的平滑泛函。它基于迭代引导,可以看作是在高维参数空间上近似求解某些积分方程的方法。在高维高斯模型的情况下,该方法产生具有最佳错误率的平滑泛函的估计量。该研究项目将研究各种重要高维统计模型的此类估计量的性质,包括量子统计中的对数凹模型、流形模型、稀疏模型和密度矩阵估计模型。目标是确定函数估计中的极小极大最优错误率,并根据问题函数的平滑程度和复杂性参数来研究快速参数率和慢速非参数率之间的相变。这需要解决许多具有挑战性的分析和概率问题,包括通过独立随机过程(随机同伦)的叠加来研究自举马尔可夫链的逼近、高维正态逼近和耦合方法以及浓度界限的开发统计估计器。该项目将导致对高维函数估计问题的更深入理解,并开发高维统计推断中的各种新概率工具。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of smooth functionals in high-dimensional models: Bootstrap chains and Gaussian approximation
高维模型中平滑泛函的估计:Bootstrap 链和高斯近似
  • DOI:
    10.1214/22-aos2197
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koltchinskii; Vladimir
  • 通讯作者:
    Vladimir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Koltchinskii其他文献

THÈSE DE DOCTORAT ÈS MATHÉMATIQUES
数学博士论文
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bodhisattva Sen;Richard Nickl;Vladimir Koltchinskii;Philippe Rigollet;Arnak S. Dalalyan
  • 通讯作者:
    Arnak S. Dalalyan

Vladimir Koltchinskii的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Koltchinskii', 18)}}的其他基金

Estimation of Smooth Functionals of Covariance and Other Parameters of High-Dimensional Models
高维模型协方差和其他参数的平滑泛函的估计
  • 批准号:
    1810958
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Asymptotics and concentration in spectral estimation for large matrices
大矩阵谱估计中的渐近和集中
  • 批准号:
    1509739
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Probability Theory and Statistics in High and Infinite Dimensions: Empirical Processes Theory and Beyond
高维和无限维中的概率论和统计:经验过程理论及其他
  • 批准号:
    1407649
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Complexity Penalization in High Dimensional Matrix Estimation Problems
高维矩阵估计问题中的复杂度惩罚
  • 批准号:
    1207808
  • 财政年份:
    2012
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Complexity Regularization in Statistical Learning Theory
统计学习理论中的复杂性正则化
  • 批准号:
    0906880
  • 财政年份:
    2009
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
MSPA-MCS: Sparsity in High-Dimensional Learning Problems
MSPA-MCS:高维学习问题的稀疏性
  • 批准号:
    0624841
  • 财政年份:
    2006
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Probabilistic and Statistical Methods in Machine Learning
机器学习中的概率和统计方法
  • 批准号:
    0304861
  • 财政年份:
    2004
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

激发态密度泛函方法模拟光分子开关的双光子吸收光谱
  • 批准号:
    12304285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新一代非共线性密度泛函及应用
  • 批准号:
    22373004
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
莱维过程的指数泛函
  • 批准号:
    12301165
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
外尔半金属的非线性霍尔效应的含时密度泛函理论研究
  • 批准号:
    12374059
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
巨正则系综下基于密度泛函理论的电催化醇氧化机理研究
  • 批准号:
    22303038
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Inference for Functionals in High-Dimensional Regression
高维回归中泛函的推理
  • 批准号:
    2113426
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
New developments in infinite dimensional stochastic analysis based on constructions of spaces of generalized functionals and applications to quantum information theory
基于广义泛函空间构造的无限维随机分析新进展及其在量子信息论中的应用
  • 批准号:
    19K03592
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal Nonparametric Estimation of High-Dimensional Functionals in Causal Inference
因果推理中高维泛函的最优非参数估计
  • 批准号:
    1810979
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Estimation of Smooth Functionals of Covariance and Other Parameters of High-Dimensional Models
高维模型协方差和其他参数的平滑泛函的估计
  • 批准号:
    1810958
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
New development of theory of generalized functionals, an infinite dimensional stochastic analysis and applications to theory of quantum dynamical system
广义泛函理论新进展、无限维随机分析及其在量子动力系统理论中的应用
  • 批准号:
    15K04940
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了