CAREER: Kinetic Theory of Irreversible Processes

职业:不可逆过程的动力学理论

基本信息

  • 批准号:
    2141564
  • 负责人:
  • 金额:
    $ 63.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This CAREER award supports bringing together theory, numerical simulations and spacecraft data analysis to advance our understanding of fundamental plasma processes. Plasmas are gases made of electrically charged particles, and they can be found everywhere in our universe. Neon lights, lightning, auroras, stars and the interplanetary space are all examples of matter in the plasma state. Electromagnetic interactions play a crucial role in the dynamics of plasmas, including plasma energization and heating. For example, such interactions are responsible for heating the outer solar atmosphere, the solar corona, to temperatures in excess of one million degrees. The wind of plasma continuously emitted by the sun into the interplanetary space, the solar wind, is also heated to temperatures higher than what current theories predict. One of the open questions in plasma physics is how the energy stored in the electric and magnetic fields can ultimately heat a plasma. This problem will be investigated with the support of this award by developing cutting-edge numerical tools complemented by theory and analysis of data from past and current space missions. The research will be integrated with an enhanced space physics education plan that will target underrepresented minority groups in STEM disciplines at all levels of education. Engaging activities will be organized through summer camps and showcase lessons to enhance student awareness about space physics and its impacts on life and technology.This award establishes a research program that addresses the interplay between kinetic effects and the dynamics on the large scales in turbulent systems such as the natural plasmas of the heliosphere. Most of the plasma environments encountered in nature and in the laboratory may be classified as weakly collisional or collisionless, in the sense that the timescales associated with collisional relaxation are orders of magnitude longer than the typical dynamical ones. As a consequence, plasmas are most often far from thermodynamic equilibrium, and transport models based on weak perturbations from such states do not apply. Instead, kinetic mechanisms such as wave particle interactions play a crucial role in the processes of energy dissipation and plasma energization. The research effort supported with this award aims to understand the two-way feedback between kinetic physics and large-scale dynamics to advance knowledge of the processes that govern the turbulent cascade, dissipation and particle energization in weakly collisional magnetized plasmas. To this end, an extended hybrid collisional kinetic model will be developed and used to investigate, for the first time, turbulence in weakly collisional magnetized plasmas. In-situ spacecraft data analysis from past and current space missions will be analyzed and compared with numerical and theoretical results. Results from this work will find application in heliospheric environments, but also in more exotic astrophysical systems such as stellar and pulsar winds, accretion disks around widely different central objects, and the interstellar medium.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(第117-2)的部分资助。该职业奖支持将理论,数值模拟和航天器数据分析汇总在一起,以促进我们对基本等离子体过程的理解。等离子体是由电荷颗粒制成的气体,在我们宇宙中到处都可以找到它们。霓虹灯,闪电,极光,星星和星际空间都是等离子体状态的物质的例子。电磁相互作用在等离子体的动力学中起着至关重要的作用,包括等离子体能量和加热。例如,这种相互作用负责将外部太阳大气(即太阳能电晕)加热到超过一百万度的温度。太阳连续排放到星际空间的血浆风也被加热到高于当前理论预测的温度。 等离子体物理学中的一个空旷的问题之一是,在电场和磁场中存储的能量最终如何加热等离子体。 通过开发尖端数值工具的支持,将通过理论和过去和当前空间任务的数据进行分析来调查该问题。该研究将与增强的太空物理教育计划融合,该计划将针对各个教育水平的STEM学科中代表性不足的少数群体。参与活动将通过夏令营和展示课程组织,以增强学生对空间物理学及其对生活和技术的影响的认识。该奖项建立了一项研究计划,以解决动力学效果与诸如Heliosphere自然等离子体等湍流系统中的大规模动态之间的相互作用。自然界和实验室中遇到的大多数等离子体环境可能被归类为微弱的碰撞或无碰撞,从某种意义上说,与碰撞放松相关的时间标准比典型的动力学长度更长。结果,等离子体通常远离热力学平衡,而基于此类状态的弱扰动的传输模型不适用。取而代之的是,在能量耗散和血浆能量的过程中,动力学机制(例如波颗粒相互作用)起着至关重要的作用。 该奖项支持的研究工作旨在了解动力学物理和大规模动力学之间的双向反馈,以促进对弱碰撞磁性磁化等离子体中湍流级联,耗散和粒子能量的知识。为此,将开发并使用扩展的杂化碰撞动力学模型来研究弱碰撞的磁化等离子体中的湍流。 将分析来自过去和当前空间任务的原位航天器数据分析,并将其与数值和理论结果进行比较。这项工作的结果将在地球环环境中找到应用,但在更奇特的天体物理系统中,例如恒星和Pulsar风,积聚磁盘,广泛不同的中心对象以及星际媒介。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的crietia crietia crietia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia均值得一提。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Particle-in-cell simulations of Alfvén wave parametric decay in a low-beta plasma
低 β 等离子体中阿尔文波参数衰变的粒子在细胞模拟
  • DOI:
    10.1017/s0022377823000120
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    González, C.A.;Innocenti, Maria Elena;Tenerani, Anna
  • 通讯作者:
    Tenerani, Anna
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Tenerani其他文献

Anna Tenerani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Tenerani', 18)}}的其他基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 63.72万
  • 项目类别:
    Standard Grant
Unified Framework for the Study of Alfven Wave Resonances, Magnetic Reconnection and Kelvin-Helmholtz Instabilities
阿尔文波共振、磁重联和开尔文-亥姆霍兹不稳定性研究的统一框架
  • 批准号:
    2108320
  • 财政年份:
    2021
  • 资助金额:
    $ 63.72万
  • 项目类别:
    Continuing Grant

相似国自然基金

数据与模型耦合驱动的自供能传感系统动力学理论与应用研究
  • 批准号:
    12302022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
退化非局部扩散方程的谱理论与动力学行为
  • 批准号:
    12371170
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
分子间非弹性碰撞的态-态动力学理论研究
  • 批准号:
    12374230
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
内共振加强参激模式能量采集非线性动力学理论与实验研究
  • 批准号:
    12302010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
激光探测碱金属大自旋原子磁共振系统动力学高维对称性的理论与实验研究
  • 批准号:
    12374330
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E:CAS:Automated Embedded Correlated Wavefunction Theory for Kinetic Modeling in Heterogeneous Catalysis
CDS
  • 批准号:
    2349619
  • 财政年份:
    2024
  • 资助金额:
    $ 63.72万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
  • 批准号:
    2307395
  • 财政年份:
    2023
  • 资助金额:
    $ 63.72万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
  • 批准号:
    2307394
  • 财政年份:
    2023
  • 资助金额:
    $ 63.72万
  • 项目类别:
    Standard Grant
Inverse Problems Arising from Kinetic Theory and Applications
动力学理论及其应用产生的反问题
  • 批准号:
    2306221
  • 财政年份:
    2023
  • 资助金额:
    $ 63.72万
  • 项目类别:
    Continuing Grant
Connecting Parton Cascade to QCDS Shear Viscosity for a Dynamical Model of Finite Temperature Kinetic Theory
将 Parton Cascade 连接到 QCDS 剪切粘度以建立有限温度动力学理论的动态模型
  • 批准号:
    2310021
  • 财政年份:
    2023
  • 资助金额:
    $ 63.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了