NSF-BSF: Ion transport and selectivity in salt-rejecting membranes operating at elevated salinities and pressures

NSF-BSF:在高盐度和压力下运行的脱盐膜中的离子传输和选择性

基本信息

  • 批准号:
    2136835
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Extremely salty water is produced in enormous quantities as waste from brackish water and seawater desalination, and oil and gas production. Purifying these wastewaters is a significant priority because it (1) advances human welfare and prosperity by increasing water supplies and (2) protects public health by reducing the discharge of potentially harmful wastewaters. Despite the importance of purifying very salty waters, current purification processes require substantial amounts of thermal energy or heat. This research project will investigate how to use polymer membranes to treat extremely salty water sources. Such membrane treatments can use less than one-tenth of the energy compared to conventional thermal systems. Novel experiments and molecular simulations will be used to better understand how polymer membranes perform under the high salt and high-pressure conditions needed for purifying this type of wastewater. The knowledge gained by these experiments will make it possible to develop polymer membranes specifically for high-salt wastewaters. Students researchers will collaborate directly with international partners, including travelling to Israel to improve cultural and scientific exchange. Undergraduate education will be improved through the creation of an innovative “Engineered Solutions to Water Scarcity” module where collaborators serve as guest lecturers. The interdisciplinary nature of this project will enhance mentorship of underrepresented and first-generation university undergraduate students through the CU Boulder BOLD Center by motivating interest in chemical engineering, environmental engineering, and separations science. Outreach to high-school students will be accomplished by developing and implementing classroom lessons, hands-on activities, and a short video that will be made publicly available on global water scarcity challenges and engineered solutions. The research project will elucidate mechanisms governing ion transport in membranes during high-salinity brine treatment and create a framework for designing membranes with improved water-salt selectivity by tuning chemistry and structure. The central hypothesis is that elevated salinity and pressure cause significant variations in the intrinsic ion transport properties through polymer deswelling, electrostatic charge shielding, membrane compaction, and fundamental changes in ionic hydration properties. The impact of extreme salinity and pressure conditions on these phenomena will be comprehensively investigated using advanced transport characterization techniques. In particular, transition state theory will be applied to membrane permeability to elucidate molecular-level enthalpy- and entropy-related effects that occur during ion transport and stem from extreme salinity and pressure conditions. Such molecular-level effects will be further explored using molecular simulations of ion transport through the membrane. Based on the insights gained, increasing water-salt selectivity of membranes at elevated salinity and pressure using tailored charge, hydrophobicity, and crosslinking density will be explored. Ultimately, the results of this project will reveal the effect of high salinity and pressure on molecular transport under the extreme confinement of reverse osmosis and nanofiltration membrane pores, improve the fundamental understanding of ion transport in polymers, and create design recommendations that will aid in the development of membrane-based processes for high-salinity brine treatment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
咸水和海水脱盐的废物是巨大的盐分生产的。 Esses需要大量的热能或热量这些实验获得的将使其成为可能的可能直接与国际施乐合作,将改善创建创新的“工程“工程解决方案”的缺水解决方案”,从而使人们对不足和第一代地下地下学生的学生进行指导,从而通过激励中心来激励您的中心。化学工程,环境工程和分离科学。升高和呈现因子固有的固有离子,通过静电剂,静电电荷屏蔽和离子水合特性的基本变化。将在离子转运期间出现的分子液和熵相关的效果,将膜渗透性应用于盐度和压力离子。在Elinity处的膜的选择性,并使用定制电荷来探索CAHH盐度的影响和交联密度。该奖项反映了NSF'SF'Story任务,并认为使用基金会的知识分子优点和更广泛的影响标准,这是值得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Straub其他文献

Anthony Straub的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Straub', 18)}}的其他基金

GOALI: Integrated Oxidation Vapor-gap Reverse Osmosis Systems for Water Reuse
GOALI:用于水回用的集成氧化汽隙反渗透系统
  • 批准号:
    2227273
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Multi-ion Transport, Rotation, and Turbulence in Hydrodynamic Compression of Z-pinch
NSF-BSF:Z 箍缩流体动力压缩中的多离子输运、旋转和湍流
  • 批准号:
    2308829
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
NSF-BSF: Unraveling Link between Interfacial Properties and Chemo-Mechanical Performance of Na-ion Cathode Materials via Surface Modification Approaches
NSF-BSF:通过表面改性方法揭示钠离子阴极材料的界面性质和化学机械性能之间的联系
  • 批准号:
    2321405
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NSF-BSF: Ion Transport in Composite Electrolytes: Breaking the Interfacial Energy Barriers
NSF-BSF:复合电解质中的离子传输:打破界面能垒
  • 批准号:
    2221827
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Mainstream deammonification by ion exchange and bioregeneration via partial nitritation/anammox
合作研究:NSF-BSF:通过离子交换进行主流脱氨,并通过部分亚硝化/厌氧氨氧化进行生物再生
  • 批准号:
    2000980
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NSF-BSF: Paramagnetic metal-ion labeling methods to measure mechanism of transcriptional activation in P. aeruginosa
NSF-BSF:顺磁金属离子标记方法测量铜绿假单胞菌转录激活机制
  • 批准号:
    2006154
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了