Collaborative Research: Applications of Symplectic Geometry to Frame Theory and Signal Processing
合作研究:辛几何在框架理论和信号处理中的应用
基本信息
- 批准号:2107700
- 负责人:
- 金额:$ 22.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Applications in signal processing require efficient signal representations which are robust to noise and data loss. Signals are therefore frequently represented with respect to a redundant dictionary called a frame. Frames are standard tools in applied mathematics, computer science, and engineering, and have found uses in application domains such as wireless communication, coding, and speech recognition. Special families of frames are designed for specific signal processing applications to provide optimal efficiency and robustness. The collection of frames with prescribed data forms a complicated set of matrices called a frame space. Basic features of frame spaces are not well understood, which means even simple-sounding questions about the possibility of interpolating between frames or about the probability that a random frame has good properties remain unsolved. In this project these questions are viewed through the lens of symplectic geometry, a field with roots in classical mechanics which is designed to exploit the sorts of symmetries that arise in frame theory. This project will apply techniques from symplectic geometry to give new insight into the geometric structure of frame spaces, providing new theoretical results resolving these longstanding questions as well as practical algorithms for generating uniformly random frames for use by the broader frame theory and signal processing communities. A significant component of this project is to introduce ideas from frame theory and symplectic geometry to new audiences, from school-age students and hobbyists through interactive demonstrations, to graduate students through formal research training, to non-expert mathematicians and engineers through expository writing surveying the practical applications of symplectic geometry.This project will apply tools from symplectic geometry to address three specific major open problems in frame theory. The first aim of the project is to use symplectic techniques to derive probabilistic guarantees that a frame drawn randomly from a given frame space (for example, the space of unit-norm tight frames) enjoys desirable properties, such as the Restricted Isometry Property from compressed sensing. The key insight driving this project is that symplectic geometry provides a new coordinate system for frame spaces with convenient measure theoretic properties. This observation also has implications for the second aim of the project, which is to develop novel algorithms for efficiently sampling frame spaces. Frame spaces are inherently hard to sample with direct methods because of their complicated geometry and topology, but the new symplectic frame space coordinates will lead to an efficient family of Markov chain algorithms for sampling frames. These algorithms will provide practical benefits as a tool for experimentally exploring statistics of frames such as eigenvalue distributions of partial frame operators and for generating random frames for compressed sensing applications. The third aim of the project is to extend these symplectic techniques to handle generalized frames, including fusion frames and operator-valued frames, providing probabilistic guarantees and sampling algorithms in this setting, with applications to compressed sensing of signals with block sparse structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信号处理中的应用需要有效的信号表示,并且对噪声和数据丢失具有鲁棒性。因此,信号经常用称为帧的冗余字典来表示。框架是应用数学、计算机科学和工程领域的标准工具,并且已在无线通信、编码和语音识别等应用领域中得到应用。特殊的框架系列专为特定的信号处理应用而设计,以提供最佳的效率和鲁棒性。具有规定数据的帧的集合形成一组复杂的矩阵,称为帧空间。框架空间的基本特征还没有被很好地理解,这意味着即使是关于框架之间插值的可能性或随机框架具有良好属性的概率的听起来简单的问题也仍然没有得到解决。在这个项目中,这些问题是通过辛几何的视角来看待的,辛几何是一个植根于经典力学的领域,旨在利用框架理论中出现的各种对称性。该项目将应用辛几何技术来对框架空间的几何结构提供新的见解,提供解决这些长期存在的问题的新理论结果,以及生成均匀随机框架的实用算法,供更广泛的框架理论和信号处理社区使用。该项目的一个重要组成部分是向新受众介绍框架理论和辛几何的思想,从学龄学生和业余爱好者通过互动演示,到研究生通过正式的研究培训,通过说明性写作调查向非专业数学家和工程师介绍辛几何的实际应用。该项目将应用辛几何的工具来解决框架理论中的三个具体的主要开放问题。该项目的第一个目标是使用辛技术来导出概率保证,即从给定框架空间(例如,单位范数紧框架的空间)中随机抽取的框架具有理想的属性,例如压缩的受限等距属性传感。推动该项目的关键见解是辛几何为框架空间提供了一个新的坐标系,具有方便的测量理论特性。这一观察结果也对该项目的第二个目标产生了影响,即开发用于有效采样帧空间的新颖算法。由于其复杂的几何结构和拓扑结构,框架空间本质上很难用直接方法进行采样,但是新的辛框架空间坐标将导致用于采样框架的有效马尔可夫链算法族。这些算法将作为实验探索帧统计(例如部分帧算子的特征值分布)以及为压缩感知应用生成随机帧的工具提供实际的好处。该项目的第三个目标是扩展这些辛技术来处理广义帧,包括融合帧和算子值帧,在此设置中提供概率保证和采样算法,并应用于具有块稀疏结构的信号压缩感知。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Admissibility and frame homotopy for quaternionic frames
四元数框架的容许性和框架同伦性
- DOI:10.1016/j.laa.2022.03.023
- 发表时间:2022-07
- 期刊:
- 影响因子:1.1
- 作者:Needham, Tom;Shonkwiler, Clayton
- 通讯作者:Shonkwiler, Clayton
Toric symplectic geometry and full spark frames
环面辛几何和全火花框架
- DOI:10.1016/j.acha.2022.07.004
- 发表时间:2022-11
- 期刊:
- 影响因子:2.5
- 作者:Needham, Tom;Shonkwiler, Clayton
- 通讯作者:Shonkwiler, Clayton
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clayton Shonkwiler其他文献
4分岐かご型高分子の合成とキャラクタリゼーション
四支链笼状聚合物的合成与表征
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
野田 昂志;土肥 侑也;上原 恵理香;出口 哲生;Jason Cantarella;Clayton Shonkwiler;高田 慎一;太田 豊;高野 敦志;松下 裕秀 - 通讯作者:
松下 裕秀
Open and closed random walks with fixed edgelengths in Rd
Rd 中具有固定边长的开放和封闭随机游走
- DOI:
10.1088/1751-8121/aade0a - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jason Cantarella; Kyle Chapman; Philipp Reiter;Clayton Shonkwiler - 通讯作者:
Clayton Shonkwiler
Clayton Shonkwiler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于多源时空大数据驱动的广海域船联网数据传输算法研究
- 批准号:61902367
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于时空数据的多平台用户连接关键技术研究
- 批准号:61902270
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
空间约束的在线包组推荐优化与公平性研究
- 批准号:61862013
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
大规模知识图谱上相似节点查询技术研究
- 批准号:61702015
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
融合实体特征和序列信息的用户行为建模方法研究
- 批准号:61772528
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 22.4万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
- 批准号:
2417064 - 财政年份:2024
- 资助金额:
$ 22.4万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 22.4万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 22.4万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 22.4万 - 项目类别:
Standard Grant