FMRG: Eco: Sustainable Route to 3D Solid-State Sodium-ion Battery by Direct Ink Writing and Capillary Rise Infiltration

FMRG:Eco:通过直接墨水写入和毛细管上升渗透实现 3D 固态钠离子电池的可持续途径

基本信息

  • 批准号:
    2134715
  • 负责人:
  • 金额:
    $ 270万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

While lithium-ion batteries have become increasingly popular in applications such as electric vehicles and grid energy storage, the roll-to-roll process used to manufacture these batteries is significantly inefficient. Furthermore, the recycling yield of materials used as electrodes in these batteries is very low. In addition, there are substantial geopolitical risks associated with the supply chains of critical elements such as the lithium and cobalt materials used in lithium-ion batteries. This Future Manufacturing Research Grant (FMRG) EcoManufacturing award will support fundamental research to eliminate these drawbacks by enabling a cross-disciplinary team of researchers from academia, a national laboratory and industry to investigate a novel Eco Manufacturing route to lithium- and cobalt-free three-dimensional solid-state sodium-ion batteries in which the solid electrolyte is made of polymer composites, and the electrodes are solely made of Earth-abundant elements such as sodium, potassium, manganese and nickel. The battery manufacturing concept only involves direct ink writing-based 3D printing in combination with solid-state conversion and capillary rise infiltration. These are sustainable processes that eliminate several deficiencies encountered in the conventional roll-to-roll battery manufacturing method. In addition to the research effort described above, the team plans to train the battery workforce of the next generation by creating an innovative hybrid online/in-person education and workforce development program called the Northeast Battery Workforce Training Program (NBWTP). This workforce program targets adult-learners, career-seekers without academic degrees in the field of batteries, underrepresented minorities (URMs), and veterans returning to civilian life, who will be trained to become “Battery Ready Vets.” Industrial partners and the Kleinman Center for Energy Policy at Penn will contribute to the development of this innovative workforce training program. To eliminate the deficiencies encountered in the conventional roll-to-roll battery manufacturing process, the team will develop a sustainable route to three-dimensional solid-state sodium-ion batteries based on the following six integrated thrusts: Thrust #1 (Scaffold thrust) will use direct ink writing to print a three-dimensional porous metal scaffold with both microscale and macroscale pores. Thrust #2 (Cathode thrust) will use solid-state conversion to partially convert the microscale pore walls of the scaffold into a cathode, resulting in a three-dimensional scaffold/cathode composite. Thrust #3 (Polymer electrolyte thrust) will investigate two polymer-based solid-state electrolytes infiltrated in the microscale pores of the scaffold/cathode composite using capillary rise infiltration. Thrust #4 (Anode and full battery thrust) will use capillary rise infiltration to impregnate the macroscale pores with a “self-healing” sodium anode and make the full three-dimensional solid-state sodium-ion battery. To eliminate sodium dendrite-induced short-circuiting and achieve ultralong cycle life, the “self-healing” sodium anode will transform into a liquid when the battery is operating at moderate temperatures. Thrust #5 (Recycling thrust) will use air-free electrolytic leaching to recycle used batteries. Thrust #6 (Workforce thrust) will establish a self-sustained hybrid online/in-person workforce development program to train future battery workers. This workforce training includes a professional certificate program consisting of online courses offered through Canvas Network in the form of Massive Open Online Courses (MOOCs).This Future Manufacturing award is supported by the Division of Materials Research (DMR) in the Directorate for Mathematical and Physical Sciences (MPS) and co-funded by the Division of Chemistry (CHE) in MPS, the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the Directorate for Engineering (ENG), and the Division of Electrical, Communications and Cyber Systems (ECCS) in ENG.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管锂离子电池在电动汽车和电网储能等应用中变得越来越流行,但用于制造这些电池的滚动过程却显着无效。此外,这些电池中用作电子用作的材料的回收产量非常低。此外,与关键元素的供应链(例如锂离子电池中使用的锂和钴材料)的供应链有很大的地缘政治风险。这项未来的制造研究补助金(FMRG)生态制造奖将支持基本研究,通过启用来自Academia的跨学科研究人员团队来消除这些缺点,这是一个国家实验室和行业,该团队是一家国家实验室和行业,以调查一种新型的生态制造途径,通往无锂和钴的三维固体储物构造的纯核和钴的三维固体材料,该材料是由固体构造制成的。钠,钾,锰和镍等地球元素。电池制造概念仅涉及基于墨水写作的直接3D打印,并结合固态转换和毛细管上升渗透。这些是可持续的过程,可以消除常规卷到滚动电池制造方法中遇到的几种缺陷。除了上述研究工作外,该团队还计划通过创建创新的在线/面对面的教育和劳动力发展计划来培训下一代的电池劳动力,称为东北电池劳动力培训计划(NBWTP)。该劳动力计划针对的是成人学习者,在电池领域没有学术学位的成人学习者,代表性不足的少数民族(URMS)和退伍军人返回平民生活,他们将受到培训,成为“电池准备就绪的兽医”。工业伙伴和宾夕法尼亚州克莱曼能源政策中心将为这项创新的劳动力培训计划的发展做出贡献。为了消除传统的卷到滚动电池制造过程中遇到的缺陷,该团队将根据以下六个集成的推力开发可持续的途径到三维固态钠离子电池:推力#1(脚手架推力)将使用直接的净化写作来打印三维的多孔金属脚手架和两位微型镜头和麦克风孔。推力#2(阴极推力)将使用固态转换将脚手架的微观孔壁部分转换为阴极,从而导致三维支架/阴极复合材料。推力#3(聚合物电解质推力)将研究使用毛细管升级浸润的支架/阴极复合材料的显微镜孔中的两个基于聚合物的固态电解质。推力#4(阳极和全电池推力)将使用毛细管上升浸润来用“自我修复”钠阳极浸渍宏观毛孔,并制造完整的三维固态钠离子电池。为了消除钠树突引起的短路并实现超大循环寿命,当电池在中等温度下电池运行时,“自我修复”钠阳极将变成液体。推力#5(回收推力)将使用无空气的电解步行来回收用过的电池。 Thrust#6(劳动力推力)将建立一个自我维持的在线/面对面的劳动力开发计划,以培训未来的电池工人。这项劳动力培训包括一项专业证书计划,该计划由大规模开放在线课程(MOOC)形式提供的在线课程组成。未来的制造奖由材料研究(DMR)在数学和物理科学局(MPS)局(MPS)局(MPS)局(MPS)局(MPS),并由MPS Intrion Intry Intry Intry Intry Intry Intry Intry Intry Intry Intry Intry Intry Intry Intrysim,CHE Inneriver(CHE)(CHE)组成(CHE)(CHE)。对于工程(ENG)以及ENG中的电气,通信和网络系统(ECC)的部门。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被视为通过评估来获得珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Detsi其他文献

Tri-layer nanoporous silver | gold | silver by etching without sacrificing materials through the Kirkendall effect
  • DOI:
    10.1016/j.actamat.2024.120574
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander K. Ng;Hyeongjun Koh;Eric Detsi
  • 通讯作者:
    Eric Detsi

Eric Detsi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Detsi', 18)}}的其他基金

I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
  • 批准号:
    2405325
  • 财政年份:
    2024
  • 资助金额:
    $ 270万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Overcoming the Fundamental Barriers to the Direct Reduction of Aluminum Hydroxide to Aluminum Metal
职业:了解并克服氢氧化铝直接还原为金属铝的基本障碍
  • 批准号:
    2047851
  • 财政年份:
    2021
  • 资助金额:
    $ 270万
  • 项目类别:
    Standard Grant
EAGER: Understanding Electrochemical Alloying Reaction of Nanostructured Silicon with Magnesium: Impact of Nanoscale Silicon Processing
EAGER:了解纳米结构硅与镁的电化学合金化反应:纳米硅加工的影响
  • 批准号:
    1840672
  • 财政年份:
    2018
  • 资助金额:
    $ 270万
  • 项目类别:
    Standard Grant

相似国自然基金

干旱灌区基于新型农业模式的“水-粮食-能源-生态”系统可持续协同调控机制研究
  • 批准号:
    52220105007
  • 批准年份:
    2022
  • 资助金额:
    250 万元
  • 项目类别:
    国际(地区)合作与交流项目
生态脆弱性与人类活动强度的空间耦合与可持续模式研究——以西藏札达县为例
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生态补偿与乡村居民可持续生计的互动过程和机制研究——以新安江流域为例
  • 批准号:
    42101167
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向旱区国土空间生态修复的可持续景观格局研究
  • 批准号:
    42171088
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
生态脆弱性与人类活动强度的空间耦合与可持续模式研究——以西藏札达县为例
  • 批准号:
    42101170
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FMRG: Eco: CAS-Climate: Sustainable Manufacturing Using Living Organisms and Agriculturally Derived Materials
FMRG:生态:CAS-气候:利用活有机体和农业衍生材料的可持续制造
  • 批准号:
    2308575
  • 财政年份:
    2023
  • 资助金额:
    $ 270万
  • 项目类别:
    Standard Grant
FMRG: Eco: CAS-Climate: Sustainable Manufacturing Using Living Organisms and Agriculturally Derived Materials
FMRG:生态:CAS-气候:利用活有机体和农业衍生材料的可持续制造
  • 批准号:
    2229228
  • 财政年份:
    2023
  • 资助金额:
    $ 270万
  • 项目类别:
    Standard Grant
FMRG: Eco: Circular manufacturing of sustainable bioplastics from hemp-derived building blocks
FMRG:生态:用大麻衍生建筑材料循环制造可持续生物塑料
  • 批准号:
    2328262
  • 财政年份:
    2023
  • 资助金额:
    $ 270万
  • 项目类别:
    Standard Grant
FMRG: Eco: A Systems-Enabled Paradigm Shift for Modular Sustainable Chemical Manufacturing
FMRG:Eco:系统支持的模块化可持续化学制造范式转变
  • 批准号:
    2134471
  • 财政年份:
    2022
  • 资助金额:
    $ 270万
  • 项目类别:
    Standard Grant
FMRG: Eco: Cyber Enabled Transformation to Circular Supply Chains for Sustainable Pharmaceutical Manufacturing Networks
FMRG:Eco:通过网络实现循环供应链转型,实现可持续药品制造网络
  • 批准号:
    2229250
  • 财政年份:
    2022
  • 资助金额:
    $ 270万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了