Collaborative Research: Continuous Biomanufacturing using Decoupled Growth and Production Stages for Efficient Production and Recovery
合作研究:利用分离的生长和生产阶段进行连续生物制造,以实现高效生产和回收
基本信息
- 批准号:2133661
- 负责人:
- 金额:$ 31.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The range and scale of biomanufacturing operations continue to grow, sustainably and locally producing fuels, chemicals, materials, foods, beverages, and medicines. Currently, most biomanufacturing facilities operate as batch processes, a chemical manufacturing technology developed over 70 years ago that has effectively reached its limits in productivity gains and cost reductions achievable through process optimization. Over this same period, significant progress has been made in the ability to synthetically engineer microbial cells to enhance their desirable traits and, ultimately, their ability to produce valuable bioproducts. This motivates revisiting the design of current batch and fed-batch manufacturing processes, technologies that have fallen behind the fast pace of modern metabolic engineering advances, limiting the true conversion potential of the newly rewired cells. This project aims to establish a novel continuous biomanufacturing platform that overcomes the major limitations of conventional (fed)-batch processes, leading to significant increases in reactor system productivity and a substantial reduction in manufacturing costs. The engineering knowledge and scientific discoveries generated from this project will enable the transformation of most current (fed)-batch biomanufacturing facilities to cost-effective continuous processes for large-scale production of fuels, chemicals, and other high-value products, strengthening the U.S. global lead in biomanufacturing. This interdisciplinary, multi-university project will engage a team of researchers with a diverse set of skills, experiences, and educational backgrounds, providing a unique research environment for high-school, undergraduate, and graduate students.This project integrates advanced technologies in process system engineering and synthetic biology to develop a novel continuous biomanufacturing platform for production of hydrophobic products such as lipids or lipid-derived high-value products from cellulosic feedstocks. Intracellular lipids and extracellular free fatty acids (FFAs) from Yarrowia lipolytica and fatty acid ethyl esters (FAEEs) from Saccharomyces cerevisiae will be used as archetype bioproducts to develop the continuous biomanufacturing platform. First, a two-stage continuous fermentation process equipped with a smaller growth bioreactor and a larger production bioreactor will be developed so that cell growth and product formation can be decoupled and where process operating conditions can be independently optimized to maximize the production of both biomass and target product simultaneously. Second, the two representative yeasts, Y. lipolytica and S. cerevisiae, will be engineered to enable distinct growth and production phases controlled by environmental and/or genetic switching. Y. lipolytica will be engineered to use both C5 and C6 sugars derived from cellulosic biomass to produce either intracellular lipids or extracellular FFAs with greater than 80% dry cell weight (DCW) or equivalent. S. cerevisiae will also be engineered to produce high levels of FAEEs. Due to the low density and buoyant force of the lipid products, the product recovery can be easily achieved via simple phase separation. A computational fluid dynamics (CFD) study on lipid distribution in bioreactors will be conducted to help further guide the design and optimization of the continuous biomanufacturing process, coupling product formation and in-situ product removal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物制造业务的范围和规模继续增长,可持续和当地生产燃料,化学,材料,食品,饮料和药品。目前,大多数生物制造设施都是批处理工艺,这是一种化学制造技术,它是70年前开发的一种化学制造技术,实际上已经在生产率提高和可通过过程优化实现的成本降低方面已达到了限制。在同一时期,已经取得了重大进展,以合成工程的微生物细胞增强其理想性状,并最终产生有价值的生物产品的能力。这激发了重新审视当前批处理和饲料批次制造工艺的设计,这些技术已经落后于现代代谢工程进步的快速步伐,从而限制了新循环的细胞的真正转换潜力。该项目旨在建立一个新型的连续生物制造平台,该平台克服了常规(FED)批次流程的主要局限性,从而导致反应堆系统生产率显着提高,并大大降低了制造成本。该项目产生的工程知识和科学发现将使大多数当前(美联储)生物制造设施的转型转换为具有成本效益的连续过程,以大规模生产燃料,化学品和其他高价值产品,从而增强了美国全球生物制造领域的领先优势。这个跨学科的多元大学项目将与一群具有多种技能,经验和教育背景的研究人员与团队互动纤维素原料。酿酒酵母的细胞内脂质和细胞外脂肪酸(FFA)和脂肪酸乙基(FAEES)将用作原型生物产生,以开发连续的生物制造平台。首先,将开发具有较小生长生物反应器和较大生产生物反应器的两阶段连续发酵过程,以便可以将细胞的生长和产物形成分解,并且可以独立优化过程工作条件以最大化生物量和靶产品的生产。其次,两种代表性的酵母Y.脂溶性和酿酒酵母将被设计为实现由环境和/或遗传转换控制的独特的生长和生产阶段。 Y. lipolytica将设计用于使用源自纤维素生物量的C5和C6糖,以产生细胞内脂质或大于80%干细胞重量(DCW)或同等学位的细胞外FFA。 S. cerevisiae也将经过设计以产生高水平的Faees。由于脂质产物的密度低和浮力,可以通过简单的相分离轻松实现产物的回收。将对生物反应器中的脂质分布进行一项计算流体动力学(CFD)研究,以帮助进一步指导连续的生物制造过程的设计和优化,耦合产品形成和原位产品的去除。这奖反映了NSF的法定任务,并通过使用基础的智力效果和宽阔的范围来评估支持,并通过评估值得评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hal Alper其他文献
Hal Alper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hal Alper', 18)}}的其他基金
Collaborative Research: A New Yeast Biomanufacturing Platform for Making High-value Products from Oils and Fats
合作研究:利用油脂生产高价值产品的新型酵母生物制造平台
- 批准号:
1911469 - 财政年份:2020
- 资助金额:
$ 31.33万 - 项目类别:
Standard Grant
Engineering Molecular Transport Proteins for Improved Xylose Uptake in Yeast
工程分子运输蛋白以改善酵母中的木糖吸收
- 批准号:
1067506 - 财政年份:2012
- 资助金额:
$ 31.33万 - 项目类别:
Standard Grant
相似国自然基金
基于连续张量表示的高维数据复原问题研究
- 批准号:12371456
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于双连续立方液晶的水系准固态电解质构筑及其离子迁移机制研究
- 批准号:22362014
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
混凝土损伤破坏分析连续-非连续耦合模型的研究及其应用
- 批准号:52378223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于连续波磁共振的新型金刚石色心陀螺仪研究
- 批准号:12304544
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
部分可观测连续时间马氏决策过程若干风险准则的最优控制问题研究
- 批准号:12361091
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 31.33万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 31.33万 - 项目类别:
Standard Grant
Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
- 批准号:
2324717 - 财政年份:2023
- 资助金额:
$ 31.33万 - 项目类别:
Continuing Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 31.33万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 31.33万 - 项目类别:
Standard Grant