Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems

合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法

基本信息

  • 批准号:
    2106687
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Self-organization can be viewed as a phenomenon whereby unanticipated global configurations and patterns of a collective emerge from fully distributed and simplistic rules performed by each individual, without any global coordination or external intervention. Self-organization and emergent behavior arise naturally across many fields: distributed systems and swarm robotics in computer science, interacting particle systems in physics, population dynamics and flock coordination in biology, autonomous systems in robotics and control theory, and smart materials, to name a few. Recently, the synergy between discrete probability, algorithms and statistical physics has provided a new approach for designing self-organizing particle systems by harnessing collective, emergent behavior of physical systems. The laws of physics play an increasingly important role in collective behavior at the nano- and micro-scales, especially since individual agents are far less capable than their macroscopic counterparts. Yet, while the principles of statistical physics have motivated many experimental systems, little has been done to make the corresponding underlying distributed algorithms rigorous. This project investigates how to program collections of agents to perform tasks by modeling the dynamics as self-organizing particle systems performing steps of Markov chains through local interactions that can be rigorously analyzed. The limiting distributions of these chains have distinct equilibrium characteristics that can be used to program collective behavior. The principal investigators take a three-pronged approach: First, they introduce and study generalizations of common statistical physics models, such as the Potts, Ising and hard-core models, to better capture the constraints imposed by micro-scale systems of interacting agents. Next, they explore methods to better understand the nonequilibrium dynamics of these systems long before convergence and possibly subject to forces that make the Markov chains nonreversible. Finally, they explore how collective systems might be programmed through deliberate placement of obstacles and features in the environment, rather than programming the agents themselves, as many of these tiny agents are incapable of any sophisticated (traditional) computation. As an example of programming the environment, a new version of the Schelling segregation model is being studied where people move with higher probabilities if they are unhappy with the local demographics of their neighborhoods, but these preferences can be somewhat mitigated by the placement of desirable urban infrastructures that modify individuals' incentive structures and biases. The project is having impact in promoting and advancing interdisciplinary research across many fields; education, through advanced graduate courses and broad, interdisciplinary talks; diversity at the graduate, undergraduate, and faculty levels; outreach to the general public and for K-12 education; and municipal planning, through coordination with regional planning faculty and the City of Atlanta.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自组织可以被视为一种现象,即在没有任何全球协调或外部干预的情况下,由每个个体执行的完全分布式和简单化的规则产生意想不到的集体全局配置和模式。 自组织和突现行为在许多领域自然出现:计算机科学中的分布式系统和群体机器人、物理学中的相互作用粒子系统、生物学中的种群动态和群体协调、机器人和控制理论中的自主系统以及智能材料,等等。很少。最近,离散概率、算法和统计物理学之间的协同作用为通过利用物理系统的集体涌现行为来设计自组织粒子系统提供了一种新方法。 物理定律在纳米和微米尺度的集体行为中发挥着越来越重要的作用,特别是因为个体个体的能力远不如宏观个体的能力。 然而,虽然统计物理原理激发了许多实验系统的发展,但在使相应的底层分布式算法变得严格方面却几乎没有采取任何措施。 该项目研究如何对代理集合进行编程来执行任务,方法是将动力学建模为自组织粒子系统,通过可严格分析的局部相互作用执行马尔可夫链的步骤。 这些链的极限分布具有明显的平衡特征,可用于对集体行为进行编程。主要研究人员采取了三管齐下的方法:首先,他们引入并研究了常见统计物理模型的概括,例如 Potts、Ising 和硬核模型,以更好地捕获相互作用主体的微观系统所施加的约束。 接下来,他们探索方法,以便在收敛之前更好地理解这些系统的非平衡动力学,并且可能受到使马尔可夫链不可逆的力的影响。最后,他们探索了如何通过在环境中故意放置障碍物和特征来对集体系统进行编程,而不是对代理本身进行编程,因为许多这些微型代理无法进行任何复杂的(传统)计算。作为环境规划的一个例子,正在研究谢林隔离模型的新版本,如果人们对其社区的当地人口统计不满意,他们就会以更高的概率迁移,但通过放置理想的城市可以在一定程度上缓解这些偏好改变个人激励结构和偏见的基础设施。 该项目对促进和推进许多领域的跨学科研究产生了影响;通过高级研究生课程和广泛的跨学科讲座进行教育;研究生、本科生和教师层面的多样性;面向公众和 K-12 教育的宣传;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mathematically Quantifying Non-responsiveness of the 2021 Georgia Congressional Districting Plan
从数学角度量化 2021 年佐治亚州国会选区计划的无反应性
  • DOI:
    10.1145/3551624.3555300
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao, Zhanzhan;Hettle, Cyrus;Gupta, Swati;Mattingly, Jonathan Christopher;Randall, Dana;Herschlag, Gregory Joseph
  • 通讯作者:
    Herschlag, Gregory Joseph
Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks
匿名动态网络中对局部刺激的适应性集体响应
Local Stochastic Algorithms for Alignment in Self-Organizing Particle Systems
自组织粒子系统中的局部随机对齐算法
A Heterogeneous Schelling Model for Wealth Disparity and its Effect on Segregation
贫富差距的异质谢林模型及其对隔离的影响
  • DOI:
    10.1145/3551624.3555293
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao, Zhanzhan;Randall, Dana
  • 通讯作者:
    Randall, Dana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dana Randall其他文献

Convergence rates of Markov chains for some self-assembly and non-saturated Ising models
一些自组装和非饱和伊辛模型的马尔可夫链的收敛率
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Sam Greenberg;Dana Randall
  • 通讯作者:
    Dana Randall
Mixing [Markov chain]
混合[马尔可夫链]
Mixing times of Markov chains on 3-Orientations of Planar Triangulations
平面三角剖分 3 方向上马尔可夫链的混合时间
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Miracle;Dana Randall;A. Streib;P. Tetali
  • 通讯作者:
    P. Tetali
Socioeconomic Clustering and Racial Segregation on Lattices with Heterogeneous Sites
异质点格子上的社会经济集群和种族隔离
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhanzhan Zhao;Dana Randall
  • 通讯作者:
    Dana Randall
Phase coexistence and torpid mixing in the 3-coloring model on ℤd
ℤd 上 3 着色模型中的相共存和呆滞混合
  • DOI:
    10.1137/12089538x
  • 发表时间:
    2012-10-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David J. Galvin;J. Kahn;Dana Randall;G. Sorkin
  • 通讯作者:
    G. Sorkin

Dana Randall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dana Randall', 18)}}的其他基金

AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
TRIPODS+X: VIS: Creating an Annual Data Science Forum
TRIPODS X:VIS:创建年度数据科学论坛
  • 批准号:
    1839340
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Conference: Machine Learning in Science and Engineering
会议:科学与工程中的机器学习
  • 批准号:
    1822279
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Distributed and Stochastic Algorithmic Framework for Active Matter
AitF:协作研究:活性物质的分布式随机算法框架
  • 批准号:
    1637031
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
AF: Small: Markov Chain Algorithms for Problems from Computer Science and Statistical Physics
AF:小:计算机科学和统计物理问题的马尔可夫链算法
  • 批准号:
    1526900
  • 财政年份:
    2015
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
AF: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Economics
AF:计算机科学、统计物理和经济学问题的马尔可夫链算法
  • 批准号:
    1219020
  • 财政年份:
    2012
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Markov Chain Algorithms for Problems from Computer Science and Statistical Physics
用于计算机科学和统计物理问题的马尔可夫链算法
  • 批准号:
    0830367
  • 财政年份:
    2008
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Markov Chain Algorithms for Problems from Computer Science and Statistical Physics
用于计算机科学和统计物理问题的马尔可夫链算法
  • 批准号:
    0505505
  • 财政年份:
    2005
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Analysis of Markov Chains and Algorithms for Ad-Hoc Networks
Ad-Hoc 网络的马尔可夫链和算法分析
  • 批准号:
    0515105
  • 财政年份:
    2005
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Markov Chain Algorithms for Computational Problems from Physics and Biology
用于物理和生物学计算问题的马尔可夫链算法
  • 批准号:
    0105639
  • 财政年份:
    2001
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant

相似国自然基金

剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
  • 批准号:
    2402572
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了