EFRI E3P: Nonthermal Plasma-Assisted Hydrogenolysis of Waste Plastics to Value-added Chemicals and Fuels
EFRI E3P:废塑料非热等离子体辅助氢解转化为增值化学品和燃料
基本信息
- 批准号:2132178
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Difficult to recycle plastic waste accumulates in landfills and the environment since few commercially viable recycling technologies exist, which severely deteriorates terrestrial and aquatic ecosystems. This project will examine a method called nonthermal plasma-assisted hydrogenolysis as a potential approach for recycling mixtures of plastic waste materials. Nonthermal plasma-assisted hydrogenolysis provides a low-energy pathway for depolymerizing mixed plastics (i.e., polymers) and generating value-added small molecules, such as monomers, C2-C3 olefins, and liquid paraffins, which serve as chemical feedstocks and transportation fuels. Nonthermal plasma will provide two key functions: (i) channeling electric energy to activate polymer bond-breaking processes and (ii) serving as an electrolyte for electrochemical conversion of polymer fragments to desired small molecules. This project integrates the expertise of investigators from The University of Akron and Lawrence Berkley National Laboratory with the objective of (i) developing a transformational concept in electrocatalysis, using plasma of hydrogen/hydrocarbon from polymers as gaseous electrolyte and (ii) coupling this novel concept with conventional catalysis to achieve fast and selective conversion of polymer wastes to desired chemicals. Successful demonstration of the nonthermal plasma-assisted hydrogenolysis concept will establish the knowledge base required to advance the scientific frontiers in electrocatalysis with gaseous electrolyte and plasma reaction engineering. The proposed technology could be further applied to upcycle consumer products and organic agricultural wastes generated by intensive animal farming. The nonthermal plasma-assisted hydrogenolysis of plastic wastes has a potentially transformative role in closing the loop of the plastics carbon cycle. The objective of this project is to investigate a non-thermal plasma-assisted catalysis approach for the selective conversion of mixed plastics (i.e., polymers) to monomers and small molecules. Nonthermal plasma discharge, i.e., electrically ionized gaseous species produced by dielectric barrier discharge, initiates the breaking of C-H and C-C polymer bonds which produces polymer fragments as well as their radicals and ionic species in the gas phase. The inorganic contaminants in the plastic waste, which cannot be vaporized, precipitate in the form of solid particles. Then, polymer fragments adsorb on the catalyst surface for the selective conversion to desirable small molecules at ambient temperature and pressure. Ionic species could serve as electrolytes to enable the conversion of adsorbed species on the electrocatalyst surface, a process that controls the rate and selectivity of the reactions. Ambient temperature electrocatalysis provides several attractive features: (i) decreasing the need for thermal energy, (ii) minimizing the side reactions (in particular, the formation of tar), and (iii) enhancing the selectivity toward desired products. The mechanistic understanding of nonthermal plasma-assisted catalytic hydrogenolysis of polymer wastes will be achieved through comprehensive kinetic studies, operando infrared spectroscopic studies of reactive adsorbed intermediates, in situ X-ray absorption studies of the structure of the catalyst and adsorbed polymer fragments, catalyst characterization, rational design of catalysts, and testing of a pilot-scale reactor. The results of this study will advance nonthermal plasma-assisted hydrogenolysis as a method for polymer waste recycling and yield a mechanistic understanding of gas-phase plasma electrocatalysis. Moreover, the transformative concept of gas-phase electrocatalysis with plasma as an electrolyte offers a new paradigm in electrochemistry for further basic research and practical applications. Ultimately, this project will (i) identify active, selective, and durable catalysts suitable for nonthermal plasma-assisted catalytic conversion of plastic wastes and (ii) provide the technical basis for the design and operation of nonthermal plasma gas-solid catalytic reactors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于很少有商业可行的回收技术,因此很难回收塑料废物在垃圾填埋场和环境中积累,这严重恶化了地面和水生生态系统。该项目将研究一种称为非血浆辅助氢解作为回收塑料废料混合物的潜在方法的方法。非热等离子体辅助的氢解提供了低能途径,可用于去聚合的混合塑料(即聚合物)和产生增值的小分子,例如单体,C2-C3烯烃和液体石膏,可作为化学剂和交通运输厂。非热等离子体将提供两个关键功能:(i)引导电能激活聚合物键合过程,(ii)用作电解质的电解质,用于将聚合物片段转化为所需的小分子。该项目整合了阿克伦大学和劳伦斯·伯克利国家实验室的研究人员的专业知识,目的是(i)使用来自聚合物的氢/烃等离子体在电催化中开发转化概念,作为气态电解质和(ii)将这种新颖概念偶联随着常规催化,将聚合物废物迅速转化为所需的化学物质。成功证明非热等离子体辅助氢解的概念将建立通过气体电解质和血浆反应工程进行电催化中的科学前沿所需的知识库。提出的技术可以进一步应用于由密集型动物养殖产生的升级消费产品和有机农业废物。塑料废物的非热等离子体辅助氢解具有在关闭塑料碳循环的环路中的潜在变化作用。 该项目的目的是研究混合塑料(即聚合物)向单体和小分子的选择性转化的非热等离子体辅助催化方法。非热等离子体放电,即介电屏障放电产生的电离子气体物种,启动了C-H和C-C聚合物键的破裂,该键在气相中产生聚合物片段及其自由基和离子物种。塑料废物中无法蒸发的无机污染物以固体颗粒的形式沉淀。然后,聚合物片段在催化剂表面上吸附,以选择性转换为在环境温度和压力下的理想小分子。离子物种可以用作电解质,以使电催化剂表面上吸附物种的转化,这一过程控制了反应的速率和选择性。环境温度电催化提供了几种吸引人的特征:(i)减少对热能的需求,(ii)最大程度地减少侧反应(尤其是焦油的形成),以及(iii)增强对所需产品的选择性。通过全面的动力学研究,Operando红外光谱研究,反应性吸附的中间体,原位X射线吸收研究的催化剂结构和催化性聚合物片段化的蛋白质片段化学研究,将通过全面的动力学研究,催化性X射线吸收研究来实现对聚合物废物的非热等血浆催化氢解的机械理解。 ,催化剂的合理设计以及试验尺度反应堆的测试。这项研究的结果将推进非热等离子体辅助氢解作为聚合物废物回收的方法,并对气相等离子体电催化产生机械理解。此外,用等离子体作为电解质的气相电催化的变革概念为进一步的基础研究和实际应用提供了新的电化学范式。最终,该项目将(i)确定适用于塑料废物的非热等离子体辅助催化转化的活性,选择性和耐用催化剂,并且(ii)为非热等离子体气体溶质催化反应器的设计和操作提供了技术基础。奖项反映了NSF的法定任务,并通过使用基金会的智力优点和更广泛的影响审查标准评估值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cost-effective Polymer-based Membranes for Drinking Water Purification
- DOI:10.1016/j.giant.2022.100099
- 发表时间:2022-04
- 期刊:
- 影响因子:7
- 作者:Xiaohan Xu;Yuqing Yang;Tianbo Liu;Benjamin Chu
- 通讯作者:Xiaohan Xu;Yuqing Yang;Tianbo Liu;Benjamin Chu
Transient responses of product formation in nonthermal plasma-assisted D2O-CO2-rubber reaction
非热等离子体辅助 D2O-CO2-橡胶反应中产物形成的瞬态响应
- DOI:10.1016/j.catcom.2023.106707
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Chuang, Steven S.C.;Huhe, Fnu;Oduntan, Aderinsola;Peng, Zhenmeng
- 通讯作者:Peng, Zhenmeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Chuang其他文献
Steven Chuang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
EFRI E3P: Supercritical Extraction for the Elimination of End-of-Life Plastics (SCE3P)
EFRI E3P:超临界萃取消除报废塑料 (SCE3P)
- 批准号:
2132093 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Hydrogenolysis for upcycling of polyesters and mixed plastics
EFRI E3P:用于聚酯和混合塑料升级改造的氢解
- 批准号:
2132033 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: GOALI: Waste Management and Circularity of Crosslinked Polyurethane Foams
EFRI E3P:GOALI:废物管理和交联聚氨酯泡沫的循环利用
- 批准号:
2132183 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Tuning Catalyst Design to Recycle Mixed Polymer Streams
EFRI E3P:调整催化剂设计以回收混合聚合物流
- 批准号:
2029394 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: End of Life Plastics as Starting Materials for Filtration and Barrier Applications
EFRI E3P:报废塑料作为过滤和屏障应用的起始材料
- 批准号:
2029387 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant