FW-HTF-R/Collaborative Research: Human-Robot Sensory Transfer for Worker Productivity, Training, and Quality of Life in Remote Undersea Inspection and Construction Tasks
FW-HTF-R/合作研究:人机感官传递可提高远程海底检查和施工任务中工人的生产力、培训和生活质量
基本信息
- 批准号:2128895
- 负责人:
- 金额:$ 145.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Future of Work at the Human-Technology Frontier (FW-HTF): Core Research project will create a novel interface for remote operation of undersea robots and customize it to the needs of offshore industries and workers. The novel interface integrates robot sensor readings and high-speed predictive simulations of hydrodynamic forces to create an immersive mixed reality (MR) display. In addition to augmented video images of the robot's surroundings, the interface converts measurements of water flow rates, hydrostatic pressure, ambient temperature, and other variables into tactile sensations for the operator. Likewise, the interface will render natural movements of the operator's body into control commands to the robot. The goal is human-robot "sensory transfer," that is, seamless translation of perceptions and actions between the operator and the robot. The goal of this project is to develop and match the capabilities of the interface to industry and worker needs. One anticipated benefit is to reduce the extensive training currently required for operators, thereby increasing access to these jobs while reducing industry training expenses and downtime due to personnel shortages. The project will study the most effective way to improve worker performance, safety, and quality of life, and by requiring a diverse set of subjects, will show how such human-robot interfaces can expand economic opportunity to broad sections of society. The interface can also be used in a purely virtual mode as a training tool. The project will examine the use of this capability to recruit workers from adjacent fields, such as construction. Offshore applications that would directly benefit from this project include subsea infrastructure inspection, geological surveys, marine habitat monitoring, pollution assessments, ship-hull inspections, unexploded ordnance surveys, contraband detection, aquaculture monitoring, search and rescue, and archaeological exploration and surveys. An increase in extreme weather and rising sea levels will place increasing demands on offshore operations to protect and repair coastal damage. Similarly offshore sustainable energy infrastructure such as wind, wave, or tidal generators will increase the demand for undersea inspection, construction, and maintenance.This project will reconceptualize future subsea industry by advancing knowledge of underwater Human-Robot Interaction (HRI) in under-explored subsea workplaces, illuminating socioeconomic features and adult-learning needs of workforce transformation to subsea industry, and establishing academia-industry-government partnerships for improving performance, safety, and societal outcomes of subsea works. Novel human-robot sensory transfer methods are suggested for reliability against conditions unique to subsea. These methods will support fast and accurate reconstruction of subsea workplaces. MR will be used to generate human-perceivable simulation of remote subsea workplaces in real time based on feedback from a novel robotic sensing and data transmission system. Motion capture will be created for easier navigation of remotely operated vehicles (ROVs). This research will establish new knowledge on motivational and educational determinants of introducing easy-to-use collaborative ROVs as part of a transformative workforce for future subsea robot operations, through extensive participation from industrial partners. The assessment will integrate techniques from psychometric and behavioral sciences as well as engineering and human factors. The work will also pioneer the development of a future subsea job framework for integration of ROVs into a participatory delivery of core subsea services. The economic benefits of robotic adoption will be estimated based on demand projection and elasticity estimation. This research will transform the frontiers of human-technology partnership in the context of the future subsea industry, reposition workforce threatened by automation in other domains, enhance future workers’ safety and well-being, and improve subsea operation performance, thus enhancing the long-term sustainable ocean exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类技术前沿的工作未来(FW-HTF):核心研究项目将创建一个用于海底机器人远程操作的新颖界面,并根据海上工业和工人的需求进行定制。该新颖的界面集成了机器人传感器读数和操作。流体动力的高速预测模拟,以创建身临其境的混合现实 (MR) 显示 除了机器人周围环境的增强视频图像之外,该界面还可以转换水流速率、静水压力、环境温度和其他数据的测量结果。同样,该界面会将操作员身体的自然运动转化为机器人的控制命令,即人机之间的感知和动作的无缝转换。该项目的目标是开发接口功能并将其与行业和工人的需求相匹配,其中一个预期的好处是减少操作员目前所需的大量培训,从而增加获得这些工作的机会,同时减少行业培训费用。以及人员造成的停机时间该项目将研究提高工人绩效、安全和生活质量的最有效方法,并通过要求不同的主题,将展示这种人机界面如何将经济机会扩大到社会各阶层。该项目还可以在纯虚拟模式下用作培训工具,研究如何使用该功能从邻近领域招募工人,例如将直接受益于该项目的海上应用,包括海底基础设施检查、地质调查。 、海洋栖息地监测、污染评估、船体检查、未爆炸弹药调查、违禁品侦查、水产养殖监测、搜救以及考古勘探和调查 极端天气的增加和海平面上升将对海上作业保护和修复可持续能源造成越来越大的需求。风力、波浪或潮汐发电机等基础设施将增加对海底检查、施工和维护的需求。该项目将通过推进水下人机交互的知识来重新构想未来的海底工业(HRI)在尚未开发的海底工作场所,阐明劳动力转型到海底行业的社会特征和成人学习需求,并建立学术界-工业界-政府合作伙伴关系,以提高海底工作的绩效、安全和社会成果。建议使用感官传输方法来应对海底特有的条件,这些方法将支持海底工作场所的快速、准确重建,用于生成人类可感知的远程海底模拟。这项研究将根据新型机器人传感和数据传输系统的反馈,在工作场所进行实时运动捕捉,以便更轻松地导航遥控潜水器(ROV)。通过工业合作伙伴的广泛参与,使用协作式 ROV 作为未来海底机器人操作的变革性劳动力的一部分。这项评估将整合心理测量和行为科学以及工程和人为因素的技术。这项工作也将引领未来的发展。海底工作框架将 ROV 集成到核心海底服务的参与式交付中。将根据需求预测和弹性估计来估计机器人采用的经济效益。这项研究将改变未来海底行业背景下的人与技术合作的前沿,在其他领域重新定位受自动化威胁的劳动力,提高未来工人的安全和福祉,提高海底作业绩效,从而促进长期可持续的海洋勘探。该奖项法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ROV teleoperation via human body motion mapping: Design and experiment
- DOI:10.1016/j.compind.2023.103959
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Pengxiang Xia;Hengxu You;Yang Ye;Jing Du
- 通讯作者:Pengxiang Xia;Hengxu You;Yang Ye;Jing Du
Shear Instability and Turbulent Mixing in the Stratified Shear Flow Behind a Topographic Ridge at High Reynolds Number
高雷诺数地形脊后分层剪切流中的剪切不稳定性和湍流混合
- DOI:10.3389/fmars.2022.829579
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Chen, Jia-Lin;Yu, Xiao;Chang, Ming-Huei;Jan, Sen;Yang, Yiing Jang;Lien, Ren-Chieh
- 通讯作者:Lien, Ren-Chieh
Human Body Motion and Hand Gesture Control for Remotely Operated Vehicle (ROV)
遥控潜水器 (ROV) 的人体运动和手势控制
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pengxiang Xia, Hengxu You
- 通讯作者:Pengxiang Xia, Hengxu You
Visual-haptic feedback for ROV subsea navigation control
- DOI:10.1016/j.autcon.2023.104987
- 发表时间:2023-10
- 期刊:
- 影响因子:10.3
- 作者:Pengxiang Xia;Hengxu You;Jing Du
- 通讯作者:Pengxiang Xia;Hengxu You;Jing Du
VR-Based Haptic Simulator for Subsea Robot Teleoperations
- DOI:10.1061/9780784483893.126
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Fang Xu;Qi Zhu;Shuai Li;Zhuoyuan Song;Jing Du
- 通讯作者:Fang Xu;Qi Zhu;Shuai Li;Zhuoyuan Song;Jing Du
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Du其他文献
Improved Trust in Human-Robot Collaboration With ChatGPT
通过 ChatGPT 提高人机协作的信任度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Yang Ye;Hengxu You;Jing Du - 通讯作者:
Jing Du
Visualization of Rostral Migratory Stream in the Developing Rat Brain by In Vivo Electroporation
通过体内电穿孔观察发育中的大鼠大脑中的头侧迁移流
- DOI:
10.1007/s10571-018-0577-6 - 发表时间:
2018 - 期刊:
- 影响因子:4
- 作者:
Yi;Zhao;Jing Du;Yu Chen;Bing;Tong;Zhihui Huang;Shuangxing Hou;Ying Wang - 通讯作者:
Ying Wang
Unraveling photocatalytic electron transfer mechanism in polyoxometalate-encapsulated metal-organic frameworks for high-efficient CO2 reduction reaction
揭示多金属氧酸盐封装的金属有机框架中的光催化电子转移机制,以实现高效的二氧化碳还原反应
- DOI:
10.1016/j.apcatb.2022.121812 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
Jing Du;Yuan-Yuan Ma;Wen-Jing Cui;Si-Meng Zhang;Zhan-Gang Han;Run-Han Li;Xing-Qi Han;Wei Guan;Yong-Hui Wang;Ying-Qi Li;Yang Liu;Fei-Yang Yu;Kai-Qiang Wei;Hua-Qiao Tan;Zhen-Hui Kang;Yang-Guang Li - 通讯作者:
Yang-Guang Li
High molecular weight persimmon tannin is a potent hypolipidemic in high-cholesterol diet fed rats
高分子量柿子单宁对高胆固醇饮食喂养的大鼠具有有效的降血脂作用
- DOI:
10.1016/j.foodres.2012.05.024 - 发表时间:
2012-10 - 期刊:
- 影响因子:8.1
- 作者:
Bo Zou;Chunmei Li;Jin-yu Chen;Xiao-qian Dong;Ying Zhang;Jing Du - 通讯作者:
Jing Du
Functions of Circular RNAs in the Research of Reproductive and Developmental Medicine
环状RNA在生殖和发育医学研究中的功能
- DOI:
10.4103/2096-2924.224212 - 发表时间:
2017-07 - 期刊:
- 影响因子:0.8
- 作者:
Jing Du;Jun-Wei Liu;Yuan-Yuan Qian;Zhao-Feng Zhang;Li Pi;Jian-Hua Xu - 通讯作者:
Jian-Hua Xu
Jing Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Du', 18)}}的其他基金
CAREER: Structures and Properties of Bone at Multiple Length Scales
职业:多种长度尺度下骨骼的结构和特性
- 批准号:
2144614 - 财政年份:2022
- 资助金额:
$ 145.74万 - 项目类别:
Continuing Grant
NRI: INT: Collaborative Research: ForceBot: Customizable Robotic Platform for Body-Scale Physical Interaction Simulation in Virtual Reality
NRI:INT:协作研究:ForceBot:虚拟现实中人体规模物理交互模拟的可定制机器人平台
- 批准号:
2024784 - 财政年份:2020
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: High-Frequency Data Collection for Human Mobility Prediction during COVID-19
RAPID/协作研究:用于 COVID-19 期间人类流动性预测的高频数据收集
- 批准号:
2027708 - 财政年份:2020
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
Collaborative Research: Personalized Systems for Wayfinding for First Responders
协作研究:为急救人员提供寻路的个性化系统
- 批准号:
1937878 - 财政年份:2019
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
Collaborative Research: Personalized Systems for Wayfinding for First Responders
协作研究:为急救人员提供寻路的个性化系统
- 批准号:
1761459 - 财政年份:2018
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
An Integrated Computational-Experimental Approach to Three-dimensional Fracture in Polymer-Ceramic Composites
聚合物陶瓷复合材料三维断裂的综合计算实验方法
- 批准号:
1826221 - 财政年份:2018
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
相似国自然基金
有机工质-导热油ORC直接接触式蒸汽发生器湍流破碎与强化换热协同耦合机制研究
- 批准号:51706195
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
纳米流体在太阳能中温集热过程的辐射吸收特性与传热机理研究
- 批准号:51206027
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于共晶盐与导热油直接接触换热的高效储热机理
- 批准号:51106185
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
转HTFα对脊髓继发性损伤和微循环重建的影响
- 批准号:39970755
- 批准年份:1999
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326160 - 财政年份:2023
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
- 批准号:
2326198 - 财政年份:2023
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 145.74万 - 项目类别:
Standard Grant