Nonclassical mechanisms to modify and control organic crystal nucleation and growth

修改和控制有机晶体成核和生长的非经典机制

基本信息

  • 批准号:
    2128121
  • 负责人:
  • 金额:
    $ 71.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYSolution-grown single crystals serve as semiconductor, optoelectronic, and photovoltaic devices and detectors for high-energy radiation. These studies, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, fill a gap in understanding crystallization of organic materials that carry promising optical and electronic properties for use as semiconductors, solar cells, and field-effect transistors. Additionally, the research can provide valuable information about crystallization processes, which are essential for a myriad of industrial, natural, and physiological processes. Researchers at the University of Houston take on the grand fundamental science challenge to control crystallization by designing robust control strategies that rest on understanding the fundamental thermodynamic and kinetic mechanisms, and in particular the role of foreign compounds. In industry, soluble foreign compounds that interact with the solution or the crystal-solution interface are deployed to promote or inhibit crystallization. Nature achieves remarkable diversity of shapes, patterns, compositions, and functions of the arising crystalline structures by applying ingredients that control the number of formed crystals and their rates of growth. Insights gained from this project advance the science of organic crystallization in general, and the influence of foreign compounds on the synthesis of solid state organic materials in particular. The researchers also involve a diverse cohort of high school, undergraduate, and graduate students in carrying out this research, which provides them with training in advanced science and engineering concepts and methods. This in turn contributes to narrowing the gap between the demand and availability of educated workforce in Houston, which is among the widest in large U.S. cities.TECHNICAL SUMMARYAs part of this project, which is supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, the PI and this team design novel strategies to control the nucleation and growth of crystals from organic solvents that employ foreign compounds to regulate nonclassical crystallization behaviors and the nucleation and growth precursors. The accepted models of modifier activity presume that crystal nucleation and growth advance along classical pathways. Recent experiments have accumulated significant discrepancies with the classical theories. The highlighted nonclassical features involve mesoscopic crystallization precursors, ordered or disordered, which assemble in the solution independently of crystallization and may both facilitate nucleation and feed a fast mode of crystal growth. How additives impact the properties of the crystallization precursors to enhance or suppress crystal nucleation and growth has not been examined. The researchers bring complementary expertise in molecular thermodynamics and kinetics of crystallization, crystal design and advanced characterization, and molecular simulations to pursue three specific aims: 1. Design strategies to control crystal nucleation by manipulating precursors involved in nonclassical nucleation modes. 2. Elucidate molecular and mesoscopic crystallization mechanisms that persist after removal of the modifier from the growth medium by exploiting the interactions of modifiers with crystal growth precursors and with step bunches on the crystal surface. 3. Characterize interactions between pairs of modifiers mediated by the step structures and dynamics that lead to antagonistic, additive, or synergistic cooperativities between modifiers; these interactions have been disregarded by classical inhibition models. To cover a diverse array of nucleation and crystallization behaviors, the researchers employ organic crystals that carry promising optical and electronic properties for use as semiconductors, solar cells, and field-effect transistors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要分析生长的单晶充当高能辐射的半导体,光电设备和光伏设备和检测器。这些研究得到了材料研究划分的固态和材料化学计划的支持,填补了有机材料结晶的空白,这些材料的结晶具有有希望的光学和电子特性,可用作半导体,太阳能电池和现场效应晶体管。此外,该研究可以提供有关结晶过程的宝贵信息,这对于无数工业,自然和生理过程至关重要。休斯顿大学的研究人员通过设计强大的控制策略来应对理解基本的热力学和动力学机制,尤其是外国化合物的作用来控制结晶。在行业中,与溶液或晶体溶液相互作用的可溶性外国化合物被部署以促进或抑制结晶。大自然通过应用控制形成的晶体数量及其生长速率的成分,实现了出现的晶体结构的形状,模式,组成和功能的显着多样性。从这个项目中获得的见解一般可以推进有机结晶的科学,以及外国化合物对固体有机材料的合成的影响。研究人员还涉及多种高中,本科生和研究生进行这项研究,这为他们提供了高级科学和工程概念和方法的培训。这反过来又有助于缩小休斯敦的需求和受教育劳动力的可用性之间的差异,休斯敦是美国大城市中最广泛的劳动力。该项目的技术总结部分是由材料研究部的固态和材料化学计划所支持的,PI,PI,PI和该团队设计的新颖策略来控制型号的核心构成型的核心,以控制有机溶剂的形成型的构成型构成型的核心,这些策略是基于有机溶剂的构成型构造的,这些策略构成了构成型的核心范围。以及成核和生长前体。可接受的修饰剂活性模型假定沿经典途径晶体成核和生长前进。最近的实验与经典理论累积了严重的差异。突出的非经典特征涉及有序或无序的介镜结晶前体,它们在溶液中独立于结晶组装,并且可能促进成核并促进快速的晶体生长模式。添加剂如何影响结晶前体的性质增强或抑制晶体成核和生长。研究人员提出了在分子热力学和结晶,晶体设计和高级表征的动力学方面的互补专业知识,以及分子模拟,以追求三个具体目标:1。设计策略,通过操纵参与非分类成核模式的前体来控制晶体成核。 2。阐明通过利用修饰剂与晶体生长前体的相互作用,并在晶体表面上带有阶梯束,从而阐明了从生长培养基中去除修饰剂后持续存在的分子和介观结晶机制。 3。表征由阶梯结构和动力学介导的对介导的修饰符之间的相互作用,这些阶跃结构和动力学导致修饰符之间的拮抗,加性或协同合作关系;这些相互作用已被经典抑制模型忽略。 To cover a diverse array of nucleation and crystallization behaviors, the researchers employ organic crystals that carry promising optical and electronic properties for use as semiconductors, solar cells, and field-effect transistors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solvent Structure and Dynamics near the Surfaces of β-Hematin Crystals
  • DOI:
    10.1021/acs.jpcb.1c06589
  • 发表时间:
    2021-10-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Verma,Laksmanji;Vekilov,Peter G.;Palmer,Jeremy C.
  • 通讯作者:
    Palmer,Jeremy C.
The life and accomplishments of Alex Chernov
亚历克斯·切尔诺夫的生平和成就
  • DOI:
    10.1016/j.jcrysgro.2023.127108
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Malkin, Alexander J.;Vekilov, Peter G.;De Yoreo, James J.
  • 通讯作者:
    De Yoreo, James J.
The pathway from the solution to the steps
从解决方案到步骤的路径
  • DOI:
    10.1016/j.jcrysgro.2022.126870
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Vekilov, Peter G.;Verma, Lakshmanji;Palmer, Jeremy C.;Chakrabarti, Rajshree;Warzecha, Monika
  • 通讯作者:
    Warzecha, Monika
Understanding crystal nucleation mechanisms: where do we stand? General discussion
  • DOI:
    10.1039/d2fd90021a
  • 发表时间:
    2022-07-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Anderson, Michael W.;Bennett, Matthew;Zeglinski, Jacek
  • 通讯作者:
    Zeglinski, Jacek
How to Identify the Crystal Growth Unit
  • DOI:
    10.1002/ijch.202100081
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Lakshmanji Verma;M. Warzecha;R. Chakrabarti;V. Hadjiev;J. Palmer;P. Vekilov
  • 通讯作者:
    Lakshmanji Verma;M. Warzecha;R. Chakrabarti;V. Hadjiev;J. Palmer;P. Vekilov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Vekilov其他文献

Peter Vekilov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Vekilov', 18)}}的其他基金

Solvent-structuring at the interface between crystals and mixed organic-aqueous solvents
晶体和混合有机水溶剂之间界面的溶剂结构化
  • 批准号:
    1710354
  • 财政年份:
    2017
  • 资助金额:
    $ 71.46万
  • 项目类别:
    Continuing Grant
NER: Protein chips of attoliter protein droplets on microelectrodes
NER:微电极上阿托升蛋白质液滴的蛋白质芯片
  • 批准号:
    0609387
  • 财政年份:
    2006
  • 资助金额:
    $ 71.46万
  • 项目类别:
    Standard Grant

相似国自然基金

面向3D打印平行机的精确调度算法与动态调整机制研究
  • 批准号:
    72301196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于胰腺癌肿瘤微环境干预与调整的铂(IV)前药体系构建及其作用机制研究
  • 批准号:
    22377090
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于DRG/DIP的医疗服务项目价格动态调整机制研究
  • 批准号:
    72364021
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
合作博弈视角下群决策共识调整机制理论及应用研究
  • 批准号:
    72371134
  • 批准年份:
    2023
  • 资助金额:
    39.00 万元
  • 项目类别:
    面上项目
低氧诱导因子HIF-1α转录高调整合素αVβ6促进肺纤维化作用和调控机制研究
  • 批准号:
    82270076
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Cognitive and Affective Mechanisms Underlying an Olfactory Approach to Modify Cigarette Craving: A Neurobehavioral Investigation
改变香烟渴望的嗅觉方法背后的认知和情感机制:一项神经行为研究
  • 批准号:
    10621915
  • 财政年份:
    2020
  • 资助金额:
    $ 71.46万
  • 项目类别:
Cognitive and Affective Mechanisms Underlying an Olfactory Approach to Modify Cigarette Craving: A Neurobehavioral Investigation
改变香烟渴望的嗅觉方法背后的认知和情感机制:一项神经行为研究
  • 批准号:
    10266007
  • 财政年份:
    2020
  • 资助金额:
    $ 71.46万
  • 项目类别:
Cognitive and Affective Mechanisms Underlying an Olfactory Approach to Modify Cigarette Craving: A Neurobehavioral Investigation
改变香烟渴望的嗅觉方法背后的认知和情感机制:神经行为研究
  • 批准号:
    10455539
  • 财政年份:
    2020
  • 资助金额:
    $ 71.46万
  • 项目类别:
Mechanisms to diversify repertoire and modify T cell activity after infection
感染后 T 细胞活性多样化和改变的机制
  • 批准号:
    8573498
  • 财政年份:
    2013
  • 资助金额:
    $ 71.46万
  • 项目类别:
Mechanisms to diversify repertoire and modify T cell activity after infection
感染后 T 细胞活性多样化和改变的机制
  • 批准号:
    8709989
  • 财政年份:
    2013
  • 资助金额:
    $ 71.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了