Nonclassical mechanisms to modify and control organic crystal nucleation and growth

修改和控制有机晶体成核和生长的非经典机制

基本信息

  • 批准号:
    2128121
  • 负责人:
  • 金额:
    $ 71.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYSolution-grown single crystals serve as semiconductor, optoelectronic, and photovoltaic devices and detectors for high-energy radiation. These studies, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, fill a gap in understanding crystallization of organic materials that carry promising optical and electronic properties for use as semiconductors, solar cells, and field-effect transistors. Additionally, the research can provide valuable information about crystallization processes, which are essential for a myriad of industrial, natural, and physiological processes. Researchers at the University of Houston take on the grand fundamental science challenge to control crystallization by designing robust control strategies that rest on understanding the fundamental thermodynamic and kinetic mechanisms, and in particular the role of foreign compounds. In industry, soluble foreign compounds that interact with the solution or the crystal-solution interface are deployed to promote or inhibit crystallization. Nature achieves remarkable diversity of shapes, patterns, compositions, and functions of the arising crystalline structures by applying ingredients that control the number of formed crystals and their rates of growth. Insights gained from this project advance the science of organic crystallization in general, and the influence of foreign compounds on the synthesis of solid state organic materials in particular. The researchers also involve a diverse cohort of high school, undergraduate, and graduate students in carrying out this research, which provides them with training in advanced science and engineering concepts and methods. This in turn contributes to narrowing the gap between the demand and availability of educated workforce in Houston, which is among the widest in large U.S. cities.TECHNICAL SUMMARYAs part of this project, which is supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, the PI and this team design novel strategies to control the nucleation and growth of crystals from organic solvents that employ foreign compounds to regulate nonclassical crystallization behaviors and the nucleation and growth precursors. The accepted models of modifier activity presume that crystal nucleation and growth advance along classical pathways. Recent experiments have accumulated significant discrepancies with the classical theories. The highlighted nonclassical features involve mesoscopic crystallization precursors, ordered or disordered, which assemble in the solution independently of crystallization and may both facilitate nucleation and feed a fast mode of crystal growth. How additives impact the properties of the crystallization precursors to enhance or suppress crystal nucleation and growth has not been examined. The researchers bring complementary expertise in molecular thermodynamics and kinetics of crystallization, crystal design and advanced characterization, and molecular simulations to pursue three specific aims: 1. Design strategies to control crystal nucleation by manipulating precursors involved in nonclassical nucleation modes. 2. Elucidate molecular and mesoscopic crystallization mechanisms that persist after removal of the modifier from the growth medium by exploiting the interactions of modifiers with crystal growth precursors and with step bunches on the crystal surface. 3. Characterize interactions between pairs of modifiers mediated by the step structures and dynamics that lead to antagonistic, additive, or synergistic cooperativities between modifiers; these interactions have been disregarded by classical inhibition models. To cover a diverse array of nucleation and crystallization behaviors, the researchers employ organic crystals that carry promising optical and electronic properties for use as semiconductors, solar cells, and field-effect transistors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要溶液生长的单晶可用作半导体、光电和光伏器件以及高能辐射探测器。这些研究得到了材料研究部固态和材料化学项目的支持,填补了理解有机材料结晶的空白,这些材料具有有望用作半导体、太阳能电池和场效应晶体管的光学和电子特性。此外,该研究还可以提供有关结晶过程的宝贵信息,这对于无数工业、自然和生理过程至关重要。休斯顿大学的研究人员通过设计强大的控制策略来应对控制结晶的重大基础科学挑战,这些策略依赖于对基本热力学和动力学机制的理解,特别是外来化合物的作用。在工业中,与溶液或晶体-溶液界面相互作用的可溶性外来化合物被用来促进或抑制结晶。大自然通过应用控制形成的晶体数量及其生长速率的成分,实现了所产生的晶体结构的形状、图案、成分和功能的显着多样性。从该项目中获得的见解总体上推进了有机结晶科学,特别是外来化合物对固态有机材料合成的影响。研究人员还让不同的高中生、本科生和研究生参与了这项研究,这为他们提供了先进的科学和工程概念和方法的培训。这反过来又有助于缩小休斯顿受过教育的劳动力的需求和可用性之间的差距,休斯顿是美国大城市中最宽的城市之一。技术摘要作为该项目的一部分,该项目得到了该部门固态和材料化学项目的支持在材料研究学院,PI 和该团队设计了新颖的策略来控制有机溶剂中晶体的成核和生长,这些有机溶剂使用外来化合物来调节非经典结晶行为以及成核和生长前体。公认的改性剂活性模型假定晶体成核和生长沿着经典路径进行。最近的实验积累了与经典理论的显着差异。突出的非经典特征涉及有序或无序的介观结晶前体,它们在溶液中独立于结晶而组装,并且可以促进成核并促进晶体生长的快速模式。添加剂如何影响结晶前体的性质以增强或抑制晶体成核和生长尚未得到研究。研究人员带来了分子热力学和结晶动力学、晶体设计和高级表征以及分子模拟方面的互补专业知识,以实现三个具体目标: 1. 通过操纵涉及非经典成核模式的前体来设计控制晶体成核的策略。 2. 通过利用改性剂与晶体生长前体和晶体表面阶梯束的相互作用,阐明从生长介质中去除改性剂后仍然存在的分子和介观结晶机制。 3. 表征由阶梯结构和动力学介导的成对调节剂之间的相互作用,导致调节剂之间产生拮抗、相加或协同作用;经典抑制模型忽略了这些相互作用。为了涵盖各种成核和结晶行为,研究人员采用了具有良好光学和电子特性的有机晶体,可用作半导体、太阳能电池和场效应晶体管。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solvent Structure and Dynamics near the Surfaces of β-Hematin Crystals
  • DOI:
    10.1021/acs.jpcb.1c06589
  • 发表时间:
    2021-10-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Verma,Laksmanji;Vekilov,Peter G.;Palmer,Jeremy C.
  • 通讯作者:
    Palmer,Jeremy C.
The life and accomplishments of Alex Chernov
亚历克斯·切尔诺夫的生平和成就
  • DOI:
    10.1016/j.jcrysgro.2023.127108
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Malkin, Alexander J.;Vekilov, Peter G.;De Yoreo, James J.
  • 通讯作者:
    De Yoreo, James J.
The pathway from the solution to the steps
从解决方案到步骤的路径
  • DOI:
    10.1016/j.jcrysgro.2022.126870
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Vekilov, Peter G.;Verma, Lakshmanji;Palmer, Jeremy C.;Chakrabarti, Rajshree;Warzecha, Monika
  • 通讯作者:
    Warzecha, Monika
Understanding crystal nucleation mechanisms: where do we stand? General discussion
  • DOI:
    10.1039/d2fd90021a
  • 发表时间:
    2022-07-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Anderson, Michael W.;Bennett, Matthew;Zeglinski, Jacek
  • 通讯作者:
    Zeglinski, Jacek
How to Identify the Crystal Growth Unit
  • DOI:
    10.1002/ijch.202100081
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Lakshmanji Verma;M. Warzecha;R. Chakrabarti;V. Hadjiev;J. Palmer;P. Vekilov
  • 通讯作者:
    Lakshmanji Verma;M. Warzecha;R. Chakrabarti;V. Hadjiev;J. Palmer;P. Vekilov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Vekilov其他文献

Peter Vekilov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Vekilov', 18)}}的其他基金

Solvent-structuring at the interface between crystals and mixed organic-aqueous solvents
晶体和混合有机水溶剂之间界面的溶剂结构化
  • 批准号:
    1710354
  • 财政年份:
    2017
  • 资助金额:
    $ 71.46万
  • 项目类别:
    Continuing Grant
NER: Protein chips of attoliter protein droplets on microelectrodes
NER:微电极上阿托升蛋白质液滴的蛋白质芯片
  • 批准号:
    0609387
  • 财政年份:
    2006
  • 资助金额:
    $ 71.46万
  • 项目类别:
    Standard Grant

相似国自然基金

面向3D打印平行机的精确调度算法与动态调整机制研究
  • 批准号:
    72301196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于胰腺癌肿瘤微环境干预与调整的铂(IV)前药体系构建及其作用机制研究
  • 批准号:
    22377090
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于DRG/DIP的医疗服务项目价格动态调整机制研究
  • 批准号:
    72364021
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
发达国家制度环境变化与中国企业海外子公司所有权战略调整:基于意义建构视角的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深部煤层气赋存态调整分配及释放产出机制
  • 批准号:
    42272195
  • 批准年份:
    2022
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目

相似海外基金

Cognitive and Affective Mechanisms Underlying an Olfactory Approach to Modify Cigarette Craving: A Neurobehavioral Investigation
改变香烟渴望的嗅觉方法背后的认知和情感机制:一项神经行为研究
  • 批准号:
    10621915
  • 财政年份:
    2020
  • 资助金额:
    $ 71.46万
  • 项目类别:
Cognitive and Affective Mechanisms Underlying an Olfactory Approach to Modify Cigarette Craving: A Neurobehavioral Investigation
改变香烟渴望的嗅觉方法背后的认知和情感机制:一项神经行为研究
  • 批准号:
    10266007
  • 财政年份:
    2020
  • 资助金额:
    $ 71.46万
  • 项目类别:
Cognitive and Affective Mechanisms Underlying an Olfactory Approach to Modify Cigarette Craving: A Neurobehavioral Investigation
改变香烟渴望的嗅觉方法背后的认知和情感机制:神经行为研究
  • 批准号:
    10455539
  • 财政年份:
    2020
  • 资助金额:
    $ 71.46万
  • 项目类别:
Mechanisms to diversify repertoire and modify T cell activity after infection
感染后 T 细胞活性多样化和改变的机制
  • 批准号:
    8573498
  • 财政年份:
    2013
  • 资助金额:
    $ 71.46万
  • 项目类别:
Mechanisms to diversify repertoire and modify T cell activity after infection
感染后 T 细胞活性多样化和改变的机制
  • 批准号:
    8709989
  • 财政年份:
    2013
  • 资助金额:
    $ 71.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了