Collaborative Research: Effect of Cyclic Mechanical Stress on Ionic Conduction in Composite Polymer Electrolytes for Solid-State Batteries

合作研究:循环机械应力对固态电池复合聚合物电解质离子传导的影响

基本信息

  • 批准号:
    2125192
  • 负责人:
  • 金额:
    $ 33.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This grant will investigate how cyclic mechanical stress affects ionic conductivity in ceramic-in-polymer composite electrolytes for solid-state batteries. Solid-state electrolytes are receiving increasing attention as safer alternatives to conventional organic liquid electrolytes, which are flammable and prone to overheating. Several composite polymer electrolytes have been developed to balance high ionic conductivity and mechanical toughness. However, solid-state batteries tend to suffer performance degradation with an increased number of cycles. Internal stresses develop during charging and discharging cycles, as lithium ions move back and forth between dissimilar electrodes. Although degradation of electrodes has been studied extensively, very little is known about mechanical and microstructural changes within the electrolyte. This lack of knowledge limits the full development of safe and high-performance energy storage systems for diverse U.S. industry sectors ranging from electric vehicles, portable electronics, and biomedical devices. A more complete understanding of how dispersed rigid particles affect the mechanical behavior of polymer composites may further contribute to advances in other applications such as fuel cells, photovoltaics, biomaterials, and flexible electronics. The collaboration supported by this grant will engage and connect faculty and students at a primarily undergraduate institution and at a PhD-granting research university, both of which are Hispanic-serving institutions.Mechanical behavior of ceramic-in-polymer electrolytes is especially intriguing because it involves a very large difference in material properties between rigid particles and a viscoelastic matrix, highly coupled interaction between mechanical stresses and electrochemical ion transport, and a functionally critical space-charge region at the interface between ceramic particles and polymer chains. The central hypothesis of the project is that a limiting factor for long-range battery performance (e.g., capacity fade) is viscoelastic remodeling of composite microstructure. The project is organized along three objectives: (1) determine how composite microstructure affects mechanical behavior, (2) interrelate dynamic stresses and device-level electrochemical performance, and (3) determine how nanoscale contact stresses affect interfacial ionic conduction. Using complementary macroscale and nanoscale experiments, this investigation will develop, interrogate, and validate a multiphysics model of the interdependencies among mechanical properties, microstructure, and electrochemical performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该赠款将研究环状机械应力如何影响固态电池的陶瓷内聚合物复合电解质的离子电导率。固态电解质正在受到越来越多的关注,作为对常规有机液体电解质的更安全替代品,这些替代品可易燃且容易过热。已经开发了几种复合聚合物电解质,以平衡高离子电导率和机械韧性。但是,固态电池往往会遭受性能降解,并且循环数量增加。当锂离子在不同电极之间来回移动时,内部应力在充电和放电周期期间发展。尽管已经对电极的降解进行了广泛的研究,但对于电解质内的机械和微结构变化知之甚少。缺乏知识限制了针对各种美国行业领域的安全和高性能存储系统的全面开发,这些领域包括电动汽车,便携式电子设备和生物医学设备。对分散的刚性颗粒如何影响聚合物复合材料的机械行为的更完整理解可能会进一步有助于其他应用的进步,例如燃料电池,光伏,生物材料和柔性电子产品。 The collaboration supported by this grant will engage and connect faculty and students at a primarily undergraduate institution and at a PhD-granting research university, both of which are Hispanic-serving institutions.Mechanical behavior of ceramic-in-polymer electrolytes is especially intriguing because it involves a very large difference in material properties between rigid particles and a viscoelastic matrix, highly coupled interaction between mechanical stresses and电化学离子转运,以及陶瓷颗粒和聚合物链之间界面的功能关键空间电荷区域。 该项目的中心假设是,远程电池性能的限制因素(例如,容量淡出)是复合微观结构的粘弹性重塑。该项目沿三个目标组织:(1)确定复合微观结构如何影响机械行为,(2)相互关联的动态应力和设备级的电化学性能,(3)确定纳米级接触应力如何影响种族离子离子传导。 使用互补的宏观和纳米级实验,这项研究将发展,询问和验证机械性能,微观结构和电化学性能之间相互依赖的多物理模型。这奖反映了NSF的立法任务,并被认为是通过基金会的智力综述和广泛的评估来评估的,并且值得一提。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sang-Joon Lee其他文献

Shrinking the prostate with hormones: Effect on bichemical survival with prostate brachytherapy
  • DOI:
    10.1016/j.brachy.2009.03.179
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    William R. Thompson;Paul A. Anthony;Lisa P. Berle;Thomas M. Schroeder;Sang-Joon Lee;Kutub M. Khan
  • 通讯作者:
    Kutub M. Khan
VISUALIZATION OF CLINICAL PRACTICE GUIDELINES AND PATIENT CARE PROCESS
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sang-Joon Lee
  • 通讯作者:
    Sang-Joon Lee
Experimental study of wind load on a container crane located in a uniform flow and atmospheric boundary layers
  • DOI:
    10.1016/j.engstruct.2007.12.013
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jong-Hoon Kang;Sang-Joon Lee
  • 通讯作者:
    Sang-Joon Lee

Sang-Joon Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sang-Joon Lee', 18)}}的其他基金

Interdepartmental Joint Development of Hands-On MEMS Using Semi-Custom Design Flow
使用半定制设计流程跨部门联合开发实践 MEMS
  • 批准号:
    0511693
  • 财政年份:
    2005
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
A "Bottom-Up" Approach to Interdisciplinary Engineering Education in Nanotechnology
纳米技术跨学科工程教育的“自下而上”方法
  • 批准号:
    0431970
  • 财政年份:
    2004
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant

相似国自然基金

临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
智能建造“人机协作”场景下高龄建筑工人胜任力的影响机理与增强方法研究
  • 批准号:
    72301131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
协作研发网络对企业技术标准主导能力的影响:机理与路径研究
  • 批准号:
    72102236
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
协作研发网络对企业技术标准主导能力的影响:机理与路径研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人际情境对操作者协作能力与作业绩效的影响及其作用机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234520
  • 财政年份:
    2024
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Collaborative Research: A hydrological seesaw and its effect on alkalinity dynamics in estuaries along a climate gradient
合作研究:水文跷跷板及其对气候梯度河口碱度动态的影响
  • 批准号:
    2319434
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了