CDS&E: Multi-scale Coherent Structure Extraction and Tracking For Modern CFD Data Analysis
CDS
基本信息
- 批准号:2102761
- 负责人:
- 金额:$ 52.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Coherent structures are persistent and recognizable patterns that can be found in fluid flows. In turbulent flows, coherent structures are closely related to a diverse range of physical phenomena, and understanding their behavior is crucial for characterizing, predicting and controlling these flows. However, reliable identification and characterization of coherent structures is challenging due to their diversity and complex inter-relations across different space- and time-scales. This project brings together experts from both the data visualization and fluid mechanics communities to investigate novel solutions to multi-scale coherent structure extraction, separation, tracking, and visualization. It aims at significantly advancing the ability to analyze large datasets of turbulent flows stemming from computational fluid dynamic (CFD) simulations in a wide range of engineering and scientific applications. This project provides opportunities for both undergraduate and graduate students with different and diverse backgrounds to participate in the proposed research. The research outcomes can be integrated into the development of a number of undergraduate and graduate courses taught at the University of Houston. The outreach activities enabled by the proposed research help motivate more students to pursue a career in STEM related fields. To achieve an efficient and reliable analysis for large-scale turbulent flow data, this project aims to investigate a new multi-scale coherent structure representation that encodes relevant flow physics, statistics, and uncertainty information, and to develop a robust computation and exploration framework based on this new representation to support data-driven research. To enable this multi-scale analysis, this project applies a number of spatial and temporal domain decomposition strategies to the computational fluid dynamic (CFD) data. Multi-field analysis and high-dimensional data projection techniques are adapted to incorporate different physical attributes to the representation. A novel graph representation is leveraged to encode this multifaceted information in a concise and dimension-independent form to enable multi-scale feature extraction and tracking. A matrix representation of this graph is employed to accelerate its processing by utilizing the recent advances in large-scale matrix calculation. A new visual analytic paradigm is devised based on the proposed graph representation to aid the exploration and comprehension of different turbulence structures individually or collectively. The developed techniques implemented as a number of software libraries can be integrated into existing software, e.g., Paraview, for domain scientists to use in their daily research. The developed techniques can also be used as pre-processing toolboxes to quantify and extract coherent structures, which can then be visualized by existing software that are not suitable for direct library integration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
相干结构是在流体流动中可以找到的持久且可识别的模式。在湍流中,相干结构与各种物理现象密切相关,了解它们的行为对于表征、预测和控制这些流动至关重要。然而,由于相干结构在不同空间和时间尺度上的多样性和复杂的相互关系,对其进行可靠的识别和表征具有挑战性。该项目汇集了来自数据可视化和流体力学领域的专家,研究多尺度相干结构提取、分离、跟踪和可视化的新颖解决方案。它旨在显着提高分析来自广泛工程和科学应用中的计算流体动力学 (CFD) 模拟的大型湍流数据集的能力。该项目为具有不同背景的本科生和研究生提供了参与拟议研究的机会。研究成果可以融入休斯顿大学教授的许多本科生和研究生课程的开发中。拟议研究开展的外展活动有助于激励更多学生从事 STEM 相关领域的职业。 为了实现大规模湍流数据的高效可靠分析,该项目旨在研究一种新的多尺度相干结构表示,编码相关的流动物理、统计和不确定性信息,并开发基于基于这种新的表示来支持数据驱动的研究。为了实现这种多尺度分析,该项目对计算流体动力学 (CFD) 数据应用了许多空间和时间域分解策略。多场分析和高维数据投影技术适用于将不同的物理属性合并到表示中。利用新颖的图形表示以简洁且与维度无关的形式对这种多方面信息进行编码,以实现多尺度特征提取和跟踪。通过利用大规模矩阵计算的最新进展,采用该图的矩阵表示来加速其处理。基于所提出的图形表示设计了一种新的视觉分析范式,以帮助单独或集体探索和理解不同的湍流结构。作为许多软件库实现的开发技术可以集成到现有软件中,例如 Paraview,供领域科学家在日常研究中使用。所开发的技术还可以用作预处理工具箱来量化和提取相干结构,然后可以通过不适合直接图书馆集成的现有软件将其可视化。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Mode Decomposition for Large-Scale Coherent Structure Extraction in Shear Flows
剪切流中大规模相干结构提取的动态模式分解
- DOI:10.1109/tvcg.2021.3124729
- 发表时间:2023-02
- 期刊:
- 影响因子:5.2
- 作者:Nguyen, Duong B.;Wu, Panruo;Monico, Rodolfo Ostilla;Chen, Guoning
- 通讯作者:Chen, Guoning
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoning Chen其他文献
A strategy for inhibitors screening of xanthine oxidase based on colorimetric sensor combined with affinity chromatography technology.
基于比色传感器结合亲和层析技术的黄嘌呤氧化酶抑制剂筛选策略
- DOI:
10.1016/j.bios.2024.116510 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:12.6
- 作者:
Guoning Chen;Shuxian Zhang;Xiaofei Wang;Xiaoxuan Fan;Gidion Wilson;Yuping Sa;Xueqin Ma - 通讯作者:
Xueqin Ma
An Embedded Polygon Strategy for Quality Improvement of 2D Quadrilateral Meshes with Boundaries
用于提高带边界的二维四边形网格质量的嵌入式多边形策略
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Muhammad Naeem Akram;Lei Si;Guoning Chen - 通讯作者:
Guoning Chen
Oil-water inversion and its generation at top and bottom of the shallow sandstone reservoir in the Northern Chepaizi area, Junggar Basin, NW China
准噶尔盆地车排子北部地区浅层砂岩油藏顶底油水反转及其生成
- DOI:
10.1016/s1876-3804(14)60055-0 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:7.5
- 作者:
Xiaodong Zhao;Shaochun Yang;Kui Xiang;Guoning Chen;Chunyan Zhu;X. Wei - 通讯作者:
X. Wei
Vortex Boundary Identification using Convolutional Neural Network
使用卷积神经网络识别涡旋边界
- DOI:
10.1109/vis47514.2020.00059 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:0
- 作者:
Marzieh Berenjkoub;Guoning Chen;Tobias Günther - 通讯作者:
Tobias Günther
Preparation and application of molecularly imprinted polymers for the selective extraction of naringin and genistein from herbal medicines
分子印迹聚合物的制备及其在中药中选择性提取柚皮苷和染料木黄酮的应用
- DOI:
10.1039/c9ay01503e - 发表时间:
2019 - 期刊:
- 影响因子:3.1
- 作者:
Zhimin Luo;Aiping Xiao;Guoning Chen;Qi Guo;Chun Chang;Aiguo Zeng;Qiang Fu - 通讯作者:
Qiang Fu
Guoning Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoning Chen', 18)}}的其他基金
CAREER: Generating Hierarchical Vector-Valued Data Summaries for Scalable Flow Data Processing, Analysis and Visualization
职业:为可扩展流数据处理、分析和可视化生成分层向量值数据摘要
- 批准号:
1553329 - 财政年份:2016
- 资助金额:
$ 52.79万 - 项目类别:
Continuing Grant
EAGER: Define and Construct an Enhanced Graph Representation for Multiscale Vector Field Data Summarization
EAGER:定义和构建多尺度矢量场数据汇总的增强图形表示
- 批准号:
1352722 - 财政年份:2013
- 资助金额:
$ 52.79万 - 项目类别:
Standard Grant
相似国自然基金
两类偏微分方程大规模离散系统的特征驱动的多水平算法及其新型解法器研究
- 批准号:12371373
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于粒球计算的多粒度大规模聚类算法研究
- 批准号:62306055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模多模态预训练的关键问题研究
- 批准号:62376274
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于模块化多电平换流器技术的大规模锂电储能系统能量管控理论与方法研究
- 批准号:62303017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向大规模多模态图数据的高内聚社区挖掘关键技术研究
- 批准号:62372013
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CDS&E: Multi-scale, many-body simulations of near-field radiative heat transfer between micro/nanostructured materials
CDS
- 批准号:
1952210 - 财政年份:2020
- 资助金额:
$ 52.79万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Private Data Analytics, Synthesis, and Sharing for Large-Scale Multi-Modal Smart City Mobility Research
CDS
- 批准号:
2002985 - 财政年份:2020
- 资助金额:
$ 52.79万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Private Data Analytics Synthesis, and Sharing for Large-Scale Multi-Modal Smart City Mobility Research
CDS
- 批准号:
2003874 - 财政年份:2020
- 资助金额:
$ 52.79万 - 项目类别:
Standard Grant
CDS&E: Compiler/Runtime Support for Developing Scalable Parallel Multi-Scale Multi-Physics
CDS
- 批准号:
1940789 - 财政年份:2019
- 资助金额:
$ 52.79万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Exposing the Injection Machinery Dynamics of Bacteriophage T4 through Multi-Scale Modeling
CDS
- 批准号:
1404747 - 财政年份:2014
- 资助金额:
$ 52.79万 - 项目类别:
Standard Grant