Collaborative Research: Toward an integrated modeling framework for physics-based estimates of megathrust rupture potential

合作研究:建立基于物理的巨型逆冲破裂潜力估计的综合建模框架

基本信息

项目摘要

Subduction zones, where tectonic plates are recycled back into the mantle as in the Cascadia margin of the Pacific Northwest of the United States, host the largest earthquakes and give rise to significant hazard through ground shaking, landslides, and tsunami. This project seeks to better utilize existing geophysical and geological observations from important “natural laboratories” (Cascadia, Japan and New Zealand) by merging them more fully into new, comparative computer models of system behavior. Developing new modeling software and integrating constraints is expected to lead to new insights into the physics of subduction zone earthquakes, what observations imply for future earthquakes, and, importantly, which observations are needed to improve our understanding of subduction zone hazards and how to reduce uncertainties about system behavior. The project will involve international collaborations, leverage past investments, and will contribute to defining future, optimal observational strategies. An interdisciplinary workforce of students and post-docs will be trained through research and educational efforts, and all project software, tutorials and “cookbooks” for subduction earthquake modeling will be shared with the community, contributing to advancing computational geoscience approaches in general. A program for precollege, undergrad, and early grad students will be developed to emphasize computational geoscience as an avenue to enhance diversity in the geosciences.This collaborative effort seeks to integrate seismological, geodetic, experimental, and geological constraints for the Japan, New Zealand and Japan natural subduction zone laboratories into numerical models to advance our understanding of megathrust earthquakes. Forward models and a new numerical modeling framework for data assimilation will be deployed to get closer to versatile tools for data-driven, physics-based hazard assessment. The focus is on the evolution of fault stress and strength over a range of spatio-temporal scales, quantifying uncertainties and sensitivity to parameters. This will allow formulating best strategies for inferring relevant parameters from data in the presence of ambiguous physics, including optimal observational design within the ongoing SZ4D community effort. All code will be made publicly available along with cookbooks and tutorials, and a networked effort will establish new, quantitative links and leverage individual efforts greatly. FRES funding will support a growing community of solid Earth geodynamicists who want to deploy their models in a hazard and monitoring context. A focus will be on training and sharing material for interdisciplinary computational geoscience efforts, from undergraduate to post-doc and practitioner level. Project participants will develop sustainable pathways for participation and work to enhance representation and inclusion in the geosciences by providing new pathways of entry based on modeling and remote sensing to complement field-based approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
俯冲带是构造板块重新回到地幔的地方,就像美国西北太平洋的卡斯卡迪亚边缘一样,这里经常发生最大的地震,并通过地面震动、山体滑坡和海啸造成重大危险。该项目旨在更好地解决这一问题。通过将重要的“自然实验室”(卡斯卡迪亚、日本和新西兰)的现有地球物理和地质观测结果更充分地合并到新的系统行为比较计算机模型中,预计将开发新的建模软件并整合约束条件。以便对俯冲带地震的物理学产生新的见解,观测对未来地震意味着什么,更重要的是,需要哪些观测来提高我们对俯冲带危险的理解以及如何减少系统行为的不确定性。该项目将涉及国际。合作,利用过去的投资,并将有助于确定未来的最佳观测策略,将通过研究和教育工作培训由学生和博士后组成的跨学科队伍,所有用于俯冲地震建模的项目软件、教程和“食谱”都将得到培训。与共享将开发一个针对大学预科生、本科生和早期研究生的项目,以强调计算地球科学作为增强地球科学多样性的途径。这项合作努力旨在整合地震学、大地测量学、实验学。将日本、新西兰和日本自然俯冲带实验室的地质约束纳入数值模型,以增进我们对巨型逆冲地震的理解,并将部署用于数据同化的新数值建模框架。获得更接近的数据驱动、基于物理的灾害评估工具,重点是断层应力和强度在一系列时空尺度上的演变,量化不确定性和参数敏感性,这将有助于制定最佳策略。在存在模糊物理现象的情况下从数据推断相关参数,包括正在进行的 SZ4D 社区工作中的最佳观测设计所有代码将与食谱和教程一起公开,并且网络工作将建立新的定量链接并利用个人努力。 FRES 的资金将极大地支持越来越多的固体地球动力学家,他们希望在灾害和监测环境中部署他们的模型,重点将放在从本科生到博士后和从业人员级别的跨学科计算地球科学工作的培训和共享材料上。项目参与者将开发可持续的参与方式,并通过提供基于建模和遥感的新途径来补充实地方法,从而提高地球科学的代表性和包容性。该奖项是 NSF 的法定使命,并通过评估被认为值得支持使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Instantaneous Physics‐Based Ground Motion Maps Using Reduced‐Order Modeling
Comparison of methods for coupled earthquake and tsunami modelling
地震海啸耦合模拟方法比较
  • DOI:
    10.1093/gji/ggad053
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Abrahams, Lauren S.;Krenz, Lukas;Dunham, Eric M.;Gabriel, Alice-Agnes;Saito, Tatsuhiko
  • 通讯作者:
    Saito, Tatsuhiko
An efficient partial-differential-equation-based method to compute pressure boundary conditions in regional geodynamic models
一种基于偏微分方程的有效计算区域地球动力学模型中压力边界条件的方法
  • DOI:
    10.5194/se-13-1107-2022
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jourdon, Anthony;May, Dave A.
  • 通讯作者:
    May, Dave A.
Community‐Driven Code Comparisons for Three‐Dimensional Dynamic Modeling of Sequences of Earthquakes and Aseismic Slip
  • DOI:
    10.1029/2021jb023519
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junle Jiang;B. Erickson;Valère Lambert;J. Ampuero;R. Ando;S. Barbot;C. Cattania;Luca Dal Zilio;B. Duan;E. Dunham;A. Gabriel;N. Lapusta;Duo Li;Meng Li;Dunyu Liu;Yajing Liu;S. Ozawa;C. Pranger;Y. van Dinther
  • 通讯作者:
    Junle Jiang;B. Erickson;Valère Lambert;J. Ampuero;R. Ando;S. Barbot;C. Cattania;Luca Dal Zilio;B. Duan;E. Dunham;A. Gabriel;N. Lapusta;Duo Li;Meng Li;Dunyu Liu;Yajing Liu;S. Ozawa;C. Pranger;Y. van Dinther
How Does Thermal Pressurization of Pore Fluids Affect 3D Strike-Slip Earthquake Dynamics and Ground Motions?
孔隙流体的热加压如何影响 3D 走滑地震动力学和地面运动?
  • DOI:
    10.1785/0120220205
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Vyas, Jagdish Chandra;Gabriel, Alice-Agnes;Ulrich, Thomas;Mai, Paul Martin;Ampuero, Jean-Paul
  • 通讯作者:
    Ampuero, Jean-Paul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alice-Agnes Gabriel其他文献

Alice-Agnes Gabriel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

库车坳陷沿走向差异构造变形成因机制定量研究
  • 批准号:
    42372264
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
含走向非一致结构面岩体真三轴卸荷力学响应及破坏模式研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“走向共同富裕”: 中国机会不平等的指标估算、决定因素与对策研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
电炉冶炼钒钛磁铁矿钛酸镁型渣系渣铁分离与钒钛走向调控基础研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
伸展条件下不同走向断层生长连接模式及伴生圈闭形成机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Black Girls as Creators: an intersectional learning ecosystem toward gendered racial equity in Artificial Intelligence education
合作研究:黑人女孩作为创造者:人工智能教育中实现性别种族平等的交叉学习生态系统
  • 批准号:
    2315041
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: Black Girls as Creators: an intersectional learning ecosystem toward gendered racial equity in Artificial Intelligence education
合作研究:黑人女孩作为创造者:人工智能教育中实现性别种族平等的交叉学习生态系统
  • 批准号:
    2315043
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329674
  • 财政年份:
    2023
  • 资助金额:
    $ 69.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了