Collaborative Research: SaTC: CORE: Large: Rapid-Response Frameworks for Mitigating Online Disinformation

协作研究:SaTC:核心:大型:减少在线虚假信息的快速响应框架

基本信息

  • 批准号:
    2120496
  • 负责人:
  • 金额:
    $ 224.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Disinformation is a critical, pressing challenge for society. It diminishes our ability to respond to crisis events, including acts of terrorism and pandemics. It makes us vulnerable, as individuals, groups, and a society, to manipulation from foreign governments, financial opportunists, and a range of other bad actors. This problem, exacerbated by the design and widespread use of social media platforms, is inherently a problem of trust — disinformation undermines trust in information, science, democratic institutions, journalism, and in each other. This research advances our understanding of online disinformation and applies innovative approaches and collaboration infrastructure to address this challenge at a sophistication and pace on par with the dynamic and interdisciplinary nature of the challenge. Through the development, implementation of rapid response frameworks, the research team rapidly identifies disinformation campaigns and communicates those findings uniquely to diverse stakeholders in government, industry, media, and the broader public — helping to build societal resilience to this kind of manipulation.This research has three integrated components: 1) developing models and theories of how disinformation is seeded, cultivated, and spread that take into account the sociotechnical nature of the problem; 2) developing and applying innovative, rapid-analysis frameworks for responding to disinformation quickly; and 3) implementing and evaluating the impact of multi-stakeholder collaborations to address disinformation in real-time during real-world events. The work applies a mixed-method approach that integrates novel visualizations and network analysis to identify patterns and anomalies with qualitative analysis that reveals the meanings of those features. Extending from a rapid response approach, investigators are also developing and evaluating, using interviews and experiments, strategies for communicating these findings with diverse stakeholders. Conceptually, this research leverages theories of rumoring from sociology and social psychology and the growing body of literature related to online manipulation to shed light on the participatory dynamics of disinformation campaigns. In terms of impacts on scientific infrastructure, this effort builds collaboration frameworks that others can use to create their own systems for rapid response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虚假信息是对社会的关键,紧迫的挑战。它降低了我们应对危机事件的能力,包括恐怖主义和大流行的行为。作为个人,团体和社会,它使我们容易受到外国政府,财务机会和其他不良行为者的操纵的脆弱。这个问题加剧了社交媒体平台的设计和广泛使用,这本质上是一个信任的问题 - 虚假信息破坏了对信息,科学,民主机构,新闻业以及彼此之间的信任。这项研究促进了我们对在线虚假信息的理解,并应用了创新的方法和协作基础架构,以与挑战的动态和跨学科性质相提并论,以复杂的步伐应对这一挑战。 Through the development, implementation of rapid response frameworks, the research team rapidly identifies disinformation campaigns and communicates those findings uniquely to divers stakeholders in government, industry, media, and the broader public — helping to build social resilience to this kind of manipulation.This research has three integrated components: 1) developing models and theories of how disinformation is seeded, cultivated, and spread that take into account the sociotechnical nature of the problem; 2)开发和应用创新的快速分析框架来迅速响应虚假信息; 3)实施和评估多利益相关者协作在现实世界中实时解决虚假信息的影响。这项工作采用了混合方法方法,该方法将新颖的可视化和网络分析整合在一起,以识别模式和异常分析与定性分析,从而揭示了这些特征的含义。从快速响应方法延伸,研究人员还使用访谈和实验,与潜水员利益相关者进行交流这些发现的策略也正在开发和评估。从概念上讲,这项研究利用了来自社会学和社会心理学的传言理论,以及与在线操纵有关的文献越来越多,以阐明虚假宣传活动的参与动态。在对科学基础设施的影响方面,这项工作建立了协作框架,其他人可以用来创建自己的系统以快速响应。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Repeat Spreaders and Election Delegitimization: A Comprehensive Dataset of Misinformation Tweets from the 2020 U.S. Election
重复传播者和选举非法化:2020 年美国大选错误信息推文的综合数据集
  • DOI:
    10.51685/jqd.2022.013
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kennedy, Ian;Wack, Morgan;Beers, Andrew;Schafer, Joseph S.;Garcia-Camargo, Isabella;Spiro, Emma S.;Starbird, Kate
  • 通讯作者:
    Starbird, Kate
Mobilizing Manufactured Reality: How Participatory Disinformation Shaped Deep Stories to Catalyze Action during the 2020 U.S. Presidential Election
动员人造现实:参与性虚假信息如何塑造深层故事以催化 2020 年美国总统选举期间的行动
  • DOI:
    10.1145/3579616
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prochaska, Stephen;Duskin, Kayla;Kharazian, Zarine;Minow, Carly;Blucker, Stephanie;Venuto, Sylvie;West, Jevin D.;Starbird, Kate
  • 通讯作者:
    Starbird, Kate
Influence and Improvisation: Participatory Disinformation during the 2020 US Election
影响力与即兴发挥:2020 年美国大选期间的参与性虚假信息
  • DOI:
    10.1177/20563051231177943
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Starbird, Kate;DiResta, Renée;DeButts, Matt
  • 通讯作者:
    DeButts, Matt
Rumors Have Rules
谣言有规律
  • DOI:
    10.58875/cxgl5395
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Spiro, Emma;Starbird, Kate
  • 通讯作者:
    Starbird, Kate
Auditing Google's Search Headlines as a Potential Gateway to Misleading Content: Evidence from the 2020 US Election
将 Google 的搜索标题视为误导性内容的潜在门户:来自 2020 年美国大选的证据
  • DOI:
    10.54501/jots.v1i4.72
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zade, Himanshu;Wack, Morgan;Zhang, Yuanrui;Starbird, Kate;Calo, Ryan;Young, Jason;West, Jevin D.
  • 通讯作者:
    West, Jevin D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Starbird其他文献

Beyond Official: Government Information Work through Personal Accounts
超越官方:通过个人账户开展政府信息工作
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dharma Dailey;Kate Starbird
  • 通讯作者:
    Kate Starbird
Repeat Spreaders and Election Delegitimization
重复传播者和选举非法化
Misinformation, Crisis, and Public Health—Reviewing the Literature
错误信息、危机和公共卫生——文献综述
  • DOI:
    10.35650/md.2063.d.2020
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Kate Starbird;Emma S. Spiro;Kolina S. Koltai
  • 通讯作者:
    Kolina S. Koltai
Post-Spotlight Posts: The Impact of Sudden Social Media Attention on Account Behavior
聚光灯后的帖子:社交媒体突然关注对帐户行为的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph S. Schafer;Kate Starbird
  • 通讯作者:
    Kate Starbird
Governance Capture in a Self-Governing Community: A Qualitative Comparison of the Croatian, Serbian, Bosnian, and Serbo-Croatian Wikipedias
自治社区中的治理捕获:克罗地亚语、塞尔维亚语、波斯尼亚语和塞尔维亚-克罗地亚语维基百科的定性比较

Kate Starbird的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Starbird', 18)}}的其他基金

WORKSHOP: The Doctoral Colloquium at the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW 2018)
研讨会:2018 年 ACM 计算机支持的协作工作和社会计算会议博士座谈会 (CSCW 2018)
  • 批准号:
    1830114
  • 财政年份:
    2018
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Standard Grant
CAREER: Unraveling Online Disinformation Trajectories: Applying and Translating a Mixed-Method Approach to Identify, Understand and Communicate Information Provenance
职业:揭开在线虚假信息的轨迹:应用和转化混合方法来识别、理解和交流信息来源
  • 批准号:
    1749815
  • 财政年份:
    2018
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Continuing Grant
CRISP Type 2/Collaborative Research: Defining and Optimizing Societal Objectives for the Earthquake Risk Management of Critical Infrastructure
CRISP 类型 2/合作研究:定义和优化关键基础设施地震风险管理的社会目标
  • 批准号:
    1735539
  • 财政年份:
    2017
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Standard Grant
CHS: Small: Detecting Misinformation Flows in Social Media Spaces During Crisis Events
CHS:小:在危机事件期间检测社交媒体空间中的错误信息流
  • 批准号:
    1420255
  • 财政年份:
    2014
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 224.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了