Origami for Dexterity in Miniature Manipulation and Testing

折纸以提高微型操作和测试的灵活性

基本信息

项目摘要

Existing methods for the manipulation and testing of miniature matter have numerous drawbacks, which limit their dexterity and inhibit broader adoption in science and engineering. They require large and complex equipment, have limited output forces, lack local sensing capability, and only have one or a few degrees of freedom for active motion. To address these issues, this project will explore micro-origami with multiple active degrees of freedom to create low-cost and customizable systems for versatile motion, sensing, and dexterous manipulation. These miniature manipulators can be readily adopted for various applications such as extraction and testing of organic cells, micro-system packaging, testing of friction between granular particles, and micro-robotic arms. The improved versatility and low-cost of these systems will make them widely accessible and allow for mass fabrication of numerous devices to statistically test many samples or for application within robotic swarms. Additionally, this award will support outreach and educational efforts, including introducing middle-school girls to engineering and micro-manipulators through a summer program; creating curricula on origami inspired manipulators for a graduate course; and establishing research and mentoring opportunities for underrepresented transfer students.The project will establish an integrated methodology for the fabrication, analysis, design, sensing, and control of micro-origami systems with advanced dexterity for miniature manipulation and testing. Material systems will be identified, and fabrication processes will be established to create electro-thermally active origami at scales ranging from 10µm to 1mm. Testing of the systems will give insight to their mechanical performance, reliability, and responsiveness. Micro-origami with increasingly complex motions will be fabricated and investigated to give insight to practical challenges such as packaging, circuits, and dimensional limits of the manipulators. Simplified static and dynamic analytical models will be created to simulate the electro-thermo-mechanical coupling that occurs due to the large angle actuation of the micro-origami. The models will be validated with experimental tests and high-fidelity simulations and used to create an optimization framework that will guide the design of micro-origami for specific tasks in the manipulation of physical matter. Design and fabrication methods will be explored to embed piezoresistive- and optic-based displacement sensors within the micro-origami. On-chip and off-chip measurements will be synthesized to permit for real-time feedback control and estimation of the forces acting on the manipulators by their surroundings or payloads. Testing the micro-origami systems will give insight to the error and repeatability of open- and closed-loop control that would enable dexterous micro-manipulation and testing.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现有的微型物质的操纵和测试方法有许多缺点,限制了它们的灵活性并阻碍了在科学和工程中的更广泛采用。它们需要大型和复杂的设备,输出力有限,缺乏局部传感能力,并且只有一种或多种。为了解决这些问题,该项目将探索具有多个主动自由度的微型折纸,以创建用于多功能运动、传感和灵巧操纵的低成本且可定制的系统。通过适用于各种应用,例如有机细胞的提取和测试、微系统封装、颗粒之间的摩擦测试以及微型机械臂。这些系统的多功能性和低成本的改进将使它们广泛使用并允许大规模制造。此外,该奖项还将支持推广和教育工作,包括通过暑期项目向中学生介绍工程和微操纵器;该项目将建立一种用于制造、分析、设计、传感和控制微型折纸系统的集成方法,具有先进的微型操作和测试灵活性。将确定材料系统并建立制造工艺,以创建尺寸范围为 10μm 至 1mm 的电热活性折纸,对系统的测试将深入了解其机械性能、可靠性和性能。将制造和研究具有日益复杂的运动的微型折纸,以深入了解包装、电路和机械手的尺寸限制等实际挑战,并创建简化的静态和动态分析模型来模拟电热机械。由于微折纸的大角度驱动而发生的耦合 该模型将通过实验测试和高保真模拟进行验证,并用于创建一个优化框架,指导特定的微折纸设计。将探索设计和制造方法,将基于压阻和光学的位移传感器嵌入到微折纸中,以实现实时反馈控制。并估计周围环境或有效负载作用在机械手上的力,测试微型折纸系统将深入了解开环和闭环控制的误差和可重复性,从而实现灵巧。微操作和测试。该项目得到跨部门机器人基础研究计划的支持,该计划由工程理事会 (ENG) 和计算机与信息科学与工程理事会 (CISE) 共同管理和资助。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harnessing interpretable machine learning for holistic inverse design of origami
利用可解释的机器学习进行折纸的整体逆向设计
  • DOI:
    10.1038/s41598-022-23875-6
  • 发表时间:
    2022-11-11
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yi Zhu;E. Filipov
  • 通讯作者:
    E. Filipov
A Review on Origami Simulations: From Kinematics, To Mechanics, Toward Multiphysics
折纸模拟综述:从运动学,到力学,再到多物理场
  • DOI:
    10.1115/1.4055031
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    14.3
  • 作者:
    Zhu, Yi;Schenk, Mark;Filipov, Evgueni T.
  • 通讯作者:
    Filipov, Evgueni T.
Rapid multi-physics simulation for electro-thermal origami systems
电热折纸系统的快速多物理场仿真
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evgueni Filipov其他文献

Evgueni Filipov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evgueni Filipov', 18)}}的其他基金

Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
  • 批准号:
    2331994
  • 财政年份:
    2024
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Standard Grant
CAREER: Large, Deployable and Adaptable Structures Through Origami Engineering
职业:通过折纸工程制造大型、可部署和适应性强的结构
  • 批准号:
    1943723
  • 财政年份:
    2020
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Standard Grant

相似国自然基金

基于关节张紧-松弛原理的刚度可调软体灵巧手仿生设计与控制
  • 批准号:
    52305029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有灵巧躯干的四足机器人神经肌肉控制架构及其多模态协调行为控制方法研究
  • 批准号:
    62373064
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向上臂灵巧假肢自治的多模态感知与双向神经接口研究
  • 批准号:
    52375021
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
具备人手柔性腱鞘机械智能特性的刚柔耦合灵巧手仿生驱动原理与关键技术
  • 批准号:
    52305043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于运动-感知双向调控的灵巧神经义肢手人机共融方法研究
  • 批准号:
    62303453
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Standard Grant
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
  • 批准号:
    10680206
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
Dissecting Behavioral and Neural Mechanisms of Hand Dexterity after Stroke for Effective Rehabilitation
剖析中风后手部灵活性的行为和神经机制,以实现有效康复
  • 批准号:
    10803644
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
  • 批准号:
    10760827
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
Structural and functional imaging markers in Degenerative Cervical Myelopathy
退行性脊髓型颈椎病的结构和功能成像标志物
  • 批准号:
    10736303
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了