Collaborative Research: Evaluating fault creep in California using geodetic and seismic observations

合作研究:利用大地测量和地震观测评估加利福尼亚州的断层蠕变

基本信息

项目摘要

There is a 99.7% chance a magnitude 6.7 earthquake or larger will strike California within the next 30 years. Earthquakes are a mode of fault slip that cause seismic waves to be radiated into the Earth. Within earthquake cycle, however, faults may also undergo aseismic slip (or creep), which radiates no seismic wave. The occurrence of seismic versus aseismic slip depends on the initial frictional properties of the fault zone and their variation as a function of fault slip rate. Understanding, why, when, where and how creep rate varies on a fault is essential for quantifying earthquake potential on California's fault systems. The knowledge of spatial distribution of fault creep allows estimating location and size of future earthquakes, while the temporal variation of creep rate can be used to determine frictional properties of the fault zone. In this project we integrate measurement of ground surface deformation obtained from space-borne Interferometric Synthetic Aperture Radar and Global Positioning System with seismic observations through numerical and analytical models to constrain spatially and temporally variable creep rates along the Central and Southern San Andreas Faults. We will analyze large data sets of Synthetic Aperture Radar images acquired by several radar satellites spanning period 1992 - 2020, to generate maps of surface deformation time series at unprecedented resolution and accuracy. The results from this project will be used to investigate active crustal deformation and provide new insight into the its underlying mechanisms and dynamics, and allows better recognition and assessment of earthquake hazard and its associated risk in California. In particular, we will work to answer important questions: How much elastic vs. permanent strain occurs adjacent to the San Andreas Fault? Does this proportion change along the length of the fault? How do fault slip rates change and evolve over time? How do short-term geodetic measurements match with long-term geological measurements? How do earthquakes initiate? How do fault geometry, rheology, and history combine to determine the propagation, size, and location of earthquakes? What is the friction on a fault at the depths and conditions at which big earthquakes rupture? What role do fluids play in the generation of silent slip events? This project will also bring together young early career scientists, including one female, from American and British universities and will provide them with partial support. It will also provide valuable research experience for a graduate student. The results from this project will be incorporated in undergraduate teaching, including Physical Geology as well as graduate courses Crustal Deformation and Radar Remote Sensing, which both include numerous case examples from the San Andreas Fault.An improved knowledge of the spatially and temporally variable surface deformation field and the link to seismic and aseismic slips on faults are critically important for understanding active tectonics, mechanics of faulting and triggering large earthquakes. Unique to the San Andreas Fault is the combination of rich historic data sets, the recent deployment of EarthScope instrumentation, fault complexities and variety of natural transient phenomena, making it a natural laboratory for studying faulting processes. This 3-year research project is a collaboration between 3 early career scientists from 3 universities to advance understanding of aseismic faulting processes and underlying mechanisms in California. The study is inspired by seismic and geodetic observations of interseismic creep rate variations along the Central and Southern San Andreas Fault. Through this study, the full capacity of vast seismic, geodetic and geologic data sets provided through EarthScope will be explored. An advanced multitemporal interferometric synthetic aperture radar (InSAR) algorithm will be applied to large data sets of SAR images acquired by several radar satellites (e.g., ERS1,2, Envisat, ALOS, TerraSAR-X, CosmoSkyMed and Sentinel-A,B) spanning the period 1992 - 2020. In combination with Global Positioning System (GPS) observations, this effort provides observations of surface deformation time series at unprecedented resolution and accuracy. Time-dependent kinematic models will be applied to constrain spatiotemporal distribution of fault creep, integrating InSAR, Creepmeter, GPS and repeating earthquakes. Dynamic models informed by creep time series and lab measurements allow linking fault transient and long term behaviors to its frictional properties, evolution of effective normal stress and crustal lithology. Lastly, the link between rate changes on creeping segments and occurrence of major earthquakes on the adjacent locked sections will be investigated through static stress transferring.
未来 30 年内,加利福尼亚州发生 6.7 级或以上地震的可能性为 99.7%。地震是一种断层滑动模式,导致地震波辐射到地球。然而,在地震周期内,断层也可能发生抗震滑动(或蠕变),而不会辐射地震波。地震与地震滑动的发生取决于断层带的初始摩擦特性及其作为断层滑动速率函数的变化。了解断层蠕变速率变化的原因、时间、地点和方式对于量化加州断层系统的地震潜力至关重要。了解断层蠕变的空间分布可以估计未来地震的位置和规模,而蠕变速率的时间变化可用于确定断层带的摩擦特性。在该项目中,我们通过数值和分析模型将星载干涉合成孔径雷达和全球定位系统获得的地表变形测量与地震观测相结合,以约束沿圣安德烈亚斯断层中部和南部的空间和时间变化的蠕变速率。我们将分析 1992 年至 2020 年期间多颗雷达卫星获取的合成孔径雷达图像的大数据集,以前所未有的分辨率和精度生成表面变形时间序列图。该项目的结果将用于研究活跃的地壳变形,并为其潜在机制和动力学提供新的见解,并可以更好地识别和评估加利福尼亚州的地震危害及其相关风险。特别是,我们将努力回答重要问题:圣安德烈亚斯断层附近发生的弹性应变与永久应变有多大?这个比例会沿着断层的长度变化吗?断层滑动率如何随时间变化和演变?短期大地测量如何与长期地质测量相匹配?地震是如何发生的?断层几何形状、流变学和历史如何结合起来确定地震的传播、规模和位置?在大地震破裂的深度和条件下,断层上的摩擦力是多少?流体在无声滑动事件的产生中起什么作用? 该项目还将汇集来自美国和英国大学的年轻的早期职业科学家,其中包括一名女性,并向他们提供部分支持。它还将为研究生提供宝贵的研究经验。该项目的成果将纳入本科教学,包括物理地质学以及研究生课程地壳变形和雷达遥感,其中都包括来自圣安德烈亚斯断层的大量案例。提高对空间和时间变化的表面变形的了解场以及与断层上的地震和地震滑动的联系对于理解活动构造、断层和引发大地震的机制至关重要。圣安德烈亚斯断层的独特之处在于它结合了丰富的历史数据集、最近部署的 EarthScope 仪器、断层复杂性和各种自然瞬变现象,使其成为研究断层过程的天然实验室。这个为期 3 年的研究项目是来自 3 所大学的 3 名早期职业科学家之间的合作,旨在加深对加利福尼亚州地震断层过程和潜在机制的了解。这项研究的灵感来自于沿圣安德烈亚斯断层中部和南部的震间蠕变率变化的地震和大地测量观测。通过这项研究,将探索 EarthScope 提供的大量地震、大地测量和地质数据集的全部能力。先进的多时相干涉合成孔径雷达 (InSAR) 算法将应用于由多颗雷达卫星(例如 ERS1,2、Envisat、ALOS、TerraSAR-X、CosmoSkyMed 和 Sentinel-A、B)采集的 SAR 图像大数据集,跨越1992年至2020年期间。结合全球定位系统(GPS)观测,这项工作以前所未有的分辨率和精度提供了地表变形时间序列的观测。将应用瞬态运动学模型来约束断层蠕变的时空分布,集成 InSAR、蠕变计、GPS 和重复地震。由蠕变时间序列和实验室测量提供的动态模型允许将断层瞬态和长期行为与其摩擦特性、有效正应力的演化和地壳岩性联系起来。最后,通过静应力传递来研究蠕变段的速率变化与相邻锁定段发生大地震之间的联系。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Creep Along the Central San Andreas Fault From Surface Fractures, Topographic Differencing, and InSAR
从地表裂缝、地形差异和 InSAR 沿中央圣安德烈亚斯断层蠕变
Structural Controls Over the 2019 Ridgecrest Earthquake Sequence Investigated by High‐Fidelity Elastic Models of 3D Velocity Structures
通过 3D 速度结构的高保真弹性模型研究 2019 年 Ridgecrest 地震序列的结构控制
Measuring, modelling and projecting coastal land subsidence
测量、建模和预测沿海地面沉降
  • DOI:
    10.1038/s43017-020-00115-x
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shirzaei; M.
  • 通讯作者:
    M.
Measuring, modelling and projecting coastal land subsidence
测量、建模和预测沿海地面沉降
  • DOI:
    10.1038/s43017-020-00115-x
  • 发表时间:
    2020-12-10
  • 期刊:
  • 影响因子:
    42.1
  • 作者:
    M. Shirzaei;J. Freymueller;T. Törnqvist;D. Galloway;T. Dura;P. Minderhoud
  • 通讯作者:
    P. Minderhoud
Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California
GNSS 和 GRACE 联合反演加利福尼亚州陆地水储量变化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manoochehr Shirzaei其他文献

Manoochehr Shirzaei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manoochehr Shirzaei', 18)}}的其他基金

Collaborative Research: Evaluating fault creep in California using geodetic and seismic observations
合作研究:利用大地测量和地震观测评估加利福尼亚州的断层蠕变
  • 批准号:
    1735630
  • 财政年份:
    2017
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Standard Grant
Time-dependent Creep Model of the Central Creeping Section of the San Andreas Fault From 21 Years of InSAR, GPS and Repeating Earthquakes
21 年 InSAR、GPS 和重复地震的圣安德烈亚斯断层中央蠕变段随时间蠕变模型
  • 批准号:
    1357079
  • 财政年份:
    2014
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Origin of hydrologic responses to earthquakes: constraints from New Zealand, Taiwan, Chile, and USA
合作研究:地震水文响应的起源:来自新西兰、台湾、智利和美国的限制
  • 批准号:
    1344441
  • 财政年份:
    2014
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

多尺度冠状动脉CT在无创评估非阻塞性冠心病循环功能和预测不良结局中的研究
  • 批准号:
    82302187
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
室内空气中半挥发性有机物的动态行为研究:通过综合观测实验评估稳态机制模型的适用性
  • 批准号:
    22376003
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
头颈鳞癌类器官免疫共培养模型评估TIL回输疗法中CD8+T细胞亚群抗肿瘤活性的应用研究
  • 批准号:
    82303973
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
电力低碳转型过程中的水短缺风险评估与适应策略研究
  • 批准号:
    72304136
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图形化编程中创意的评估与激发方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309307
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309310
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bubble Trouble - Re-evaluating olivine melt inclusion barometry and trace-element geochemistry in the Cascades
合作研究:气泡麻烦 - 重新评估喀斯喀特橄榄石熔体包裹体气压和微量元素地球化学
  • 批准号:
    2342155
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309311
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bubble Trouble - Re-evaluating olivine melt inclusion barometry and trace-element geochemistry in the Cascades
合作研究:气泡麻烦 - 重新评估喀斯喀特橄榄石熔体包裹体气压和微量元素地球化学
  • 批准号:
    2342156
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了