LEAP-HI: AI-Optimized 3D Printing of Super-Soft Materials for Personalized Sensing

LEAP-HI:人工智能优化的超软材料 3D 打印,实现个性化传感

基本信息

  • 批准号:
    2053760
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

A common need in the medical community is an ability to monitor local tissue continuously, but current sensing technology lacks the personalization necessary to contour sensors for the unique anatomy of different individuals. This Leading Engineering for America's Prosperity, Health, and Infrastructure (LEAP-HI) research seeks to develop low-cost personalized sensors which can be fabricated on demand to enhance the health and well-being of Americans from all walks of life. The approach leverages fundamental research into new materials in tandem with advanced machine learning and artificial intelligence to ‘3D print’ personalized sensors with applications in health care—from prosthetics to diagnostics and therapeutics—that could impact millions of people. These advances spanning materials science, engineering, and computation will improve the economic competitiveness of the United States’ innovation and help train the next generation of scientists and engineers through a tight synergy between experimental and computational research. A series of initiatives spanning diversity, education, and outreach to further will advance key aspects of the work across age groups. This includes (a) modules on cybermanufacturing in a new cyber physical systems minor at Iowa State University, (b) working with the local chapters of Society for Advancement of Chicanos/Hispanics, Native Americans in Science, and the National Society of Black Engineers to draw students into research, (c) K-12 engagement through activities at the Wolf Museum of Exploration and Innovation (MOXI) for children, (d) working with Center for Industrial Research and Service (CIRAS) to disseminate best practices and training modules in cyber manufacturing, and (e) working with the communications offices of both the University of California at Santa Barbara and Iowa State University to disseminate the research to the public to promote the need for Engineering Leadership in the United States.This research will overcome the limitations of conventional sensor technologies for personalized health monitoring by developing new materials and processing techniques to 3D print polymers with mechanical properties that are matched to human tissue. Our strategy will yield fundamental insights into the translation of advanced materials to manufacturing by: (1) Designing and synthesizing materials that inherently provide processability for 3D printing while maintaining biocompatibility and mechanical function; (2) Advanced multi-scale simulations of the printing process through modeling and predictive dynamics at the device scale to understand macroscopic progression during the build process, and at the microstructure scale to tailor the material properties as a function of material deposition and curing; (3) Data fusion from sensor response and physics-aware machine learning models to enable real-time prediction and control of the 3D printing process; and (4) Creating ultra-soft structured sensors that enable unique sensing modalities for societal impact in personalized human health. These research aims to harness the data revolution by exploiting computational and machine-learning models to design more effective polymers and sensors in a convergent fashion. This research will yield experimental and computational methodologies that can also be applied to other engineering disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医学界的一个共同需求是监测局部组织的能力,但当前的传感技术始终缺乏针对不同个体独特解剖结构的轮廓传感器所需的个性化功能,这是美国繁荣、健康和基础设施的领先工程 (LEAP-HI)。 )研究旨在开发可按需制造的低成本个性化传感器,以提高各行各业美国人的健康和福祉。该方法利用新材料的基础研究与先进的机器学习和人工智能相结合。 “3D打印”这些传感器在材料科学、工程和计算领域的进步将提高美国创新的经济竞争力,并帮助培养下一代。通过实验和计算研究之间的紧密协同,科学家和工程师将进一步推进跨年龄段工作的关键方面,其中包括(a)新网络物理中的网络制造模块。爱荷华州立大学的小系统大学,(b) 与奇卡诺/西班牙裔进步协会、美国原住民科学协会和国家黑人工程师协会的当地分会合作,吸引学生参与研究,(c) 通过沃尔夫博物馆的活动参与 K-12 的活动儿童探索与创新中心 (MOXI),(d) 与工业研究与服务中心 (CIRAS) 合作,传播网络制造的最佳实践和培训模块,以及 (e) 与加州大学通信办公室合作圣巴巴拉和爱荷华州立大学向公众传播这项研究,以促进美国对工程领导力的需求。这项研究将通过开发 3D 打印的新材料和加工技术,克服传统传感器技术在个性化健康监测方面的局限性我们的策略将通过以下方式为先进材料转化为制造提供基本见解:(1) 设计和合成本质上为 3D 打印提供可加工性的材料,同时保持生物相容性和机械功能 (2) ) ) 高级多尺度(3) 传感器响应和物理感知机器学习模型的数据融合,以实现 3D 打印过程的实时预测和控制;(4) 创建超软结构化传感器,实现独特的传感模式,对个性化人类产生社会影响;这些研究旨在通过利用计算和数据来驾驭数据革命。这项研究将产生也可应用于其他工程学科的实验和计算方法。该奖项反映了 NSF 的法定使命,并通过使用评估被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable adaptive algorithms for next-generation multiphase flow simulations
用于下一代多相流模拟的可扩展自适应算法
Distributed multigrid neural solvers on megavoxel domains
巨型体素域上的分布式多重网格神经求解器
  • DOI:
    10.1145/3458817.3476218
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Balu, Aditya;Botelho, Sergio;Khara, Biswajit;Rao, Vinay;Sarkar, Soumik;Hegde, Chinmay;Krishnamurthy, Adarsh;Adavani, Santi;Ganapathysubramanian, Baskar
  • 通讯作者:
    Ganapathysubramanian, Baskar
NURBS-Diff: A Differentiable Programming Module for NURBS
NURBS-Diff:NURBS 的可微分编程模块
  • DOI:
    10.1016/j.cad.2022.103199
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Deva Prasad, Anjana;Balu, Aditya;Shah, Harshil;Sarkar, Soumik;Hegde, Chinmay;Krishnamurthy, Adarsh
  • 通讯作者:
    Krishnamurthy, Adarsh
Carbon Nanotube Composites with Bottlebrush Elastomers for Compliant Electrodes
用于顺应性电极的具有洗瓶刷弹性体的碳纳米管复合材料
  • DOI:
    10.1021/acspolymersau.1c00034
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Self, Jeffrey L.;Reynolds, Veronica G.;Blankenship, Jacob;Mee, Erin;Guo, Jiaqi;Albanese, Kaitlin;Xie, Renxuan;Hawker, Craig J.;de Alaniz, Javier Read;Chabinyc, Michael L.;et al
  • 通讯作者:
    et al
Digital Light Processing of Dynamic Bottlebrush Materials
动态洗瓶刷材料的数字光处理
  • DOI:
    10.1002/adfm.202200883
  • 发表时间:
    2022-02-23
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Chungryong Choi;Yoichi Okayama;Parker T. Morris;Lindsay L. Robinson;M. Gerst;Joshua C. Speros;C. Hawker
  • 通讯作者:
    C. Hawker
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baskar Ganapathysubramanian其他文献

Out-of-plane faradaic ion concentration polarization: stable focusing of charged analytes at a three-dimensional porous electrode
  • DOI:
    10.1039/d1lc01011e
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Beatrise Berzina;Sungu Kim;Umesha Peramune;Kumar Saurabh;Baskar Ganapathysubramanian;Robbyn K. Anand
  • 通讯作者:
    Robbyn K. Anand
Simulation-guided analysis of resonant soft X-ray scattering for determining the microstructure of triblock copolymers
  • DOI:
    10.1039/d2me00096b
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Veronica G. Reynolds;Devon H. Callan;Kumar Saurabh;Elizabeth A. Murphy;Kaitlin R. Albanese;Yan-Qiao Chen;Claire Wu;Eliot Gann;Craig J. Hawker;Baskar Ganapathysubramanian;Christopher M. Bates;Michael L. Chabinyc
  • 通讯作者:
    Michael L. Chabinyc
3D reconstruction of plants using probabilistic voxel carving
使用概率体素雕刻对植物进行 3D 重建
  • DOI:
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Jiale Feng;Mojdeh Saadati;Talukder Jubery;Anushrut Jignasu;Aditya Balu;Yawei Li;Lakshmi Attigala;Patrick S. Schnable;Soumik Sarkar;Baskar Ganapathysubramanian;et al
  • 通讯作者:
    et al
Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches
  • DOI:
    10.1039/d2sc04676h
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Vinayak Bhat;Parker Sornberger;Balaji Sesha Sarath Pokuri;Rebekah Duke;Baskar Ganapathysubramanian;Chad Risko
  • 通讯作者:
    Chad Risko
Computational characterization of charge transport resiliency in molecular solids
  • DOI:
    10.1039/d1me00163a
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Balaji Sesha Sarath Pokuri;Sean M. Ryno;Ramin Noruzi;Chad Risko;Baskar Ganapathysubramanian
  • 通讯作者:
    Baskar Ganapathysubramanian

Baskar Ganapathysubramanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baskar Ganapathysubramanian', 18)}}的其他基金

Collaborative Research: QRM: Microstructure Manifold Analysis Using Hierarchical Set of Morphological, Topological, and Process Descriptors
合作研究:QRM:使用形态、拓扑和过程描述符的分层集进行微观结构流形分析
  • 批准号:
    1906194
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: Solution Processing of Organic Semiconductors: A Coupled Atomistic-Continuum Framework
合作研究:有机半导体的溶液处理:耦合原子连续体框架
  • 批准号:
    1563359
  • 财政年份:
    2016
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemical Control of Polymer/PbS Blends for PV Applications
合作研究:光伏应用聚合物/PbS 混合物的化学控制
  • 批准号:
    1437636
  • 财政年份:
    2014
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Controlling Hierarchical Nanostructures in Conjugated Polymers
DMREF/合作研究:控制共轭聚合物中的分层纳米结构
  • 批准号:
    1435587
  • 财政年份:
    2014
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Sculpting fluid flow using a programmed sequence of micro-pillars
合作研究:CDS
  • 批准号:
    1306866
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: A Predictive Modeling Framework for Exploring Process-Structure-Property Relationships in Organic Solar Cells
职业生涯:用于探索有机太阳能电池工艺-结构-性能关系的预测建模框架
  • 批准号:
    1149365
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似国自然基金

衰老细胞源性SLC1A5hiCDH5hi细胞外囊泡促进增龄性骨/肌丢失作用及其机制研究
  • 批准号:
    82370891
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SIRT5-线粒体代谢轴失调介导SORT1Hi肺泡巨噬细胞METs形成在围术期急性肺损伤中的作用及机制研究
  • 批准号:
    82371292
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Trem2(hi)巨噬细胞亚群维持干细胞稳态促骨再生的效应和机制研究
  • 批准号:
    82301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
仑伐替尼耐药诱导的COLEC12hi巨噬细胞亚群对肝癌免疫治疗的影响及其机制研究
  • 批准号:
    82373405
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
有氧运动通过MeCP2乳酰化激活ZFP36转录促进TREM2hi巨噬细胞抗炎功能改善动脉粥样硬化的机制研究
  • 批准号:
    82372565
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Hydrogen Integration for Accelerated Energy Transitions Hub (HI-ACT)
氢能加速能源转型中心 (HI-ACT)
  • 批准号:
    EP/X038823/2
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Research Grant
LEAP-HI: Towards a Paradigm of Thrombosis-Free Blood-contacting Devices
LEAP-HI:迈向无血栓血液接触装置的典范
  • 批准号:
    2245427
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Health Innovation Next Generation Payment & Pricing Models (HI-PRIX)
健康创新下一代支付
  • 批准号:
    10058086
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    EU-Funded
HEALTH INNOVATION NEXT GENERATION PAYMENT&PRICING MODELS: HI- PRIX PROJECT
健康创新下一代支付
  • 批准号:
    10062152
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    EU-Funded
Hi-C法と類似配列カタログによる染色体長ギャップレスゲノムアセンブリ手法の開発
使用 Hi-C 方法和相似序列目录开发染色体长度无间隙基因组组装方法
  • 批准号:
    22KJ0650
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了