Collaborative Research: DMREF: Developing Damage Resistant Materials for Hydrogen Storage and Large-scale Transport
合作研究:DMREF:开发用于储氢和大规模运输的抗损伤材料
基本信息
- 批准号:2118522
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the promise of a hydrogen economy being closer to reality than it has even been, there is an important need for the design, development, and deployment of appropriate materials that can support and sustain the promise of a hydrogen-based infrastructure. One of the important scientific challenges associated with developing a hydrogen-compatible infrastructure is an understanding of the fundamentals of hydrogen-induced degradation in materials and developing appropriate hydrogen-resistant materials for storage and transport applications. By developing a computationally driven multi-scale modeling platform that will be informed by, and integrated with, experiments, this Designing Materials to Revolutionize and Engineer our Future (DMREF) project aims to accelerate the pace at which the controlling mechanisms of hydrogen embrittlement are discovered. As envisioned by the Materials Genome Initiative (MGI), this project will aim to enable the faster development of hydrogen-resistant materials for the energy transportation sector as it transitions from the transport of fossil fuels to hydrogen-based sources. Beyond the field of hydrogen storage and transport, the fundamental insights obtained from this project could also be helpful in designing fatigue- and corrosion-resistant sub-surface steel structures with longer lifetimes, which could enable materials designs for many other industries as well.This project aims to advance fundamental knowledge of crack tip processes that control damage accumulation and propagation under fatigue loading and the role of hydrogen in making the material more susceptible to fracture. It is hypothesized that the controlling mechanisms occur in the plastic zone around the crack tip, over a length scale of about 1 to 10 microns, which is too small for continuum theory to be predictive and too large for atomistic simulations to handle by brute force. Such a knowledge gap at the mesoscale will be closed through a tightly coupled experimental-computational program. Computational efforts will build upon the recent advances made in atomistic simulations, dislocation dynamics simulations, with insights on crystal plasticity and continuum-level modeling. The experimental efforts will leverage improved and unique capabilities that include nanoindentation, x-ray tomography (in conjunction with Brookhaven National Laboratory), and in situ testing in hydrogen environments (to be conducted at Sandia National Laboratory). By combining modeling and experiments over multiple length-scales, an experimentally validated multi-scale model for hydrogen effects on fatigue evolution in ferritic steels could be established. Insights obtained from this project have the potential to lead to the development of reliable engineering roadmaps for life prediction and risk assessment for hydrogen storage and transport structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着氢经济的承诺比以往更接近现实,迫切需要设计、开发和部署适当的材料来支持和维持氢基基础设施的承诺。与开发氢兼容基础设施相关的重要科学挑战之一是了解氢引起的材料降解的基本原理,并开发用于存储和运输应用的适当的耐氢材料。通过开发一个计算驱动的多尺度建模平台,该平台将通过实验提供信息并与实验相结合,设计材料以彻底改变和设计我们的未来(DMREF)项目旨在加快发现氢脆控制机制的步伐。正如材料基因组计划 (MGI) 所设想的那样,该项目的目标是在能源运输领域从化石燃料运输过渡到氢能源运输领域时,更快地开发抗氢材料。除了氢存储和运输领域之外,从该项目中获得的基本见解还有助于设计具有更长使用寿命的耐疲劳和耐腐蚀的地下钢结构,这也可以为许多其他行业提供材料设计。该项目旨在提高裂纹尖端过程的基础知识,这些过程控制疲劳载荷下的损伤积累和传播,以及氢在使材料更容易断裂方面的作用。据推测,控制机制发生在裂纹尖端周围的塑性区域,长度范围约为 1 至 10 微米,这对于连续介质理论来说太小而无法预测,而对于原子模拟来说太大而无法通过强力处理。这种中尺度的知识差距将通过紧密耦合的实验计算程序来弥补。计算工作将建立在原子模拟、位错动力学模拟方面的最新进展的基础上,并深入了解晶体可塑性和连续介质级建模。实验工作将利用改进的独特功能,包括纳米压痕、X射线断层扫描(与布鲁克海文国家实验室合作)以及氢环境中的原位测试(将在桑迪亚国家实验室进行)。通过结合多个长度尺度的建模和实验,可以建立经过实验验证的氢对铁素体钢疲劳演化影响的多尺度模型。从该项目中获得的见解有可能为氢存储和运输结构的寿命预测和风险评估制定可靠的工程路线图。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One dislocation at a time
一次一个脱位
- DOI:10.1038/s41563-023-01555-8
- 发表时间:2023
- 期刊:
- 影响因子:41.2
- 作者:Bulatov, Vasily;Cai, Wei
- 通讯作者:Cai, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Cai其他文献
The effects of grain size on electrical properties and domain structure of BiFeO3 thin films by sol–gel method
溶胶凝胶法研究晶粒尺寸对BiFeO3薄膜电性能和畴结构的影响
- DOI:
10.1007/s10854-015-3690-z - 发表时间:
2015-09 - 期刊:
- 影响因子:0
- 作者:
Tianyu Lei;Wei Cai;Chunlin Fu;Hong Ren;Yuanyang Sun;Guodong Li - 通讯作者:
Guodong Li
Transcriptome profiling analysis of sex-based differentially expressed mRNAs and lncRNAs in the brains of mature zebrafish (Danio rerio)
成熟斑马鱼 (Danio rerio) 大脑中基于性别的差异表达 mRNA 和 lncRNA 的转录组分析
- DOI:
10.1186/s12864-019-6197-9 - 发表时间:
2019-07 - 期刊:
- 影响因子:4.4
- 作者:
Yuan Wenliang;Jiang Shouwen;Sun Dan;Wu Zhichao;Wei Cai;Dai Chaoxu;Jiang Linhua;Peng Sihua - 通讯作者:
Peng Sihua
Importance sampling of rare transition events in Markov processes.
马尔可夫过程中罕见转移事件的重要性采样。
- DOI:
10.1103/physreve.66.046703 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Wei Cai;M. Kalos;M. de Koning;V. Bulatov - 通讯作者:
V. Bulatov
Study on the structure and properties of (1-x) BiYbO3-xBaTiO3 ceramics synthesized by sol–gel method
溶胶凝胶法合成(1-x)BiYbO3-xBaTiO3陶瓷的结构与性能研究
- DOI:
10.1080/00150193.2017.1283577 - 发表时间:
2017-01 - 期刊:
- 影响因子:0.8
- 作者:
Gang Chen;Chunlin Deng;Xiaodong Peng;Chunlin Fu;Wei Cai;Rongli Gao;Xiaoling Deng - 通讯作者:
Xiaoling Deng
Influence of Particle Size on the Spin Pinning Effect in the fcc-FePt Nanoparticles
粒径对 fcc-FePt 纳米粒子自旋钉扎效应的影响
- DOI:
10.1007/s10948-019-5091-7 - 发表时间:
2019-04 - 期刊:
- 影响因子:1.8
- 作者:
Jing Yu;Dong Han;Yao Ying;Liang Qiao;Jingwu Zheng;Wangchang Li;Juan Li;Wei Cai;Shenglei Che;Naoki Wakiya;Hisao Suzuki - 通讯作者:
Hisao Suzuki
Wei Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Cai', 18)}}的其他基金
Deep Neural Network Machine Learning for Oscillatory Navier-Stokes Flows and Nonlinear Operators, and High Dimensional Fokker-Planck Equations
用于振荡纳维-斯托克斯流和非线性算子以及高维福克-普朗克方程的深度神经网络机器学习
- 批准号:
2207449 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels
合作研究:离子通道中电荷传输的多尺度建模和数值方法
- 批准号:
1950471 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
- 批准号:
1802143 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Path Integral Monte Carlo Methods for Computing Polarizability Tensors of Nano-materials and Electrical Impedance Tomography
计算纳米材料极化张量和电阻抗断层扫描的路径积分蒙特卡罗方法
- 批准号:
1719303 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Path Integral Monte Carlo Methods for Computing Polarizability Tensors of Nano-materials and Electrical Impedance Tomography
计算纳米材料极化张量和电阻抗断层扫描的路径积分蒙特卡罗方法
- 批准号:
1764187 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
- 批准号:
1619713 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Student Travel: 7th International Conference on Multiscale Materials Modeling; Berkeley, California; 6-10 October 2014
学生旅行:第七届多尺度材料建模国际会议;
- 批准号:
1444609 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
A parallel Poisson/Helmholtz solver using local boundary integral equation and random walk methods
使用局部边界积分方程和随机游走方法的并行泊松/亥姆霍兹求解器
- 批准号:
1315128 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Structural Transitions during Catalyzed Growth of Semiconductor Nanowires
半导体纳米线催化生长过程中的结构转变
- 批准号:
1206511 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Numerical Methods for Wave Propagations in Inhomogeneous Media
非均匀介质中波传播的数值方法
- 批准号:
1005441 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant