NSF/MCB-BSF: Modeling the mechanisms that define Notch signal strength using in-vivo synthetic and quantitative biology

NSF/MCB-BSF:使用体内合成和定量生物学对定义 Notch 信号强度的机制进行建模

基本信息

  • 批准号:
    2114950
  • 负责人:
  • 金额:
    $ 107.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The many different cell types within an animal body use signals to communicate, and such signals are required to instruct cells to form complex tissues and organs during embryonic development. Determining how cells convert specific signals into accurate cellular responses is therefore fundamental to understanding both animal and human development. The goal of this project is to systematically build a theoretical model for how a conserved signaling pathway, called Notch, is converted into accurate cellular responses in both developing fruit fly tissues and mammalian cells. Through a scientific collaboration between the U.S and Israel, undergraduate and graduate students from biology, engineering, mathematics, and physics will examine how the Notch signal is converted into specific outputs using experimental and computational approaches. The multidisciplinary research team will also incorporate under-represented high school students, and collectively students will work towards a common goal as a team by combining hands-on laboratory experiences with theoretical computational methods. This approach will help them to communicate ideas and results to fellow students and will promote interdisciplinary training.Signaling pathways provide a means of cell-to-cell communication to regulate cell-specific responses during development. Cell signaling is typically activated via receptor-ligand interactions at the membrane and relayed into the nucleus via a cascade that converges on an effector transcription factor (TF) that activates and/or represses target genes. How the same core pathway induces reproducible cell-specific outcomes in different tissues remains a major question in biology. The central goal of this project is to build and test predictive models for how the Notch signal is converted into specific transcription responses using an in-vivo synthetic biology approach that incorporates quantitative data with mathematical modeling. Synthetic Notch reporters containing distinct types of DNA binding sites are used to decipher the rules of the Notch transcriptional response. Drosophila genetics, genome engineering, and biochemistry are used to assess how changes in protein stability and gene dose impact cell-specific outputs. Cell culture is used to develop new imaging tools to assess Notch signaling dynamics in real time, and computational simulations are developed to describe how key parameters (DNA binding site composition, ratios of effector proteins, protein binding dynamics, and protein degradation) alter TF complex concentration, enhancer occupancy, and transcriptional output. Collectively, these models will be used to develop a thorough quantitative understanding of Notch signaling using both cell based and whole organism assays.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动物体内许多不同的细胞类型使用信号进行通信,并且在胚胎发育过程中需要这些信号来指导细胞形成复杂的组织和器官。因此,确定细胞如何将特定信号转化为准确的细胞反应对于了解动物和人类发育至关重要。该项目的目标是系统地建立一个理论模型,用于解释保守的信号通路(Notch)如何在发育中的果蝇组织和哺乳动物细胞中转化为准确的细胞反应。通过美国和以色列之间的科学合作,生物学、工程学、数学和物理学的本科生和研究生将研究如何使用实验和计算方法将 Notch 信号转换为特定的输出。多学科研究团队还将吸收代表性不足的高中生,学生们将通过将实验室实践经验与理论计算方法相结合,以团队的形式共同努力实现共同目标。这种方法将帮助他们与同学交流想法和结果,并将促进跨学科培训。信号通路提供了一种细胞间通信的手段,以调节发育过程中的细胞特异性反应。细胞信号传导通常通过膜上的受体-配体相互作用激活,并通过级联传递到细胞核,级联汇聚到激活和/或抑制靶基因的效应转录因子 (TF)。相同的核心途径如何在不同组织中诱导可重复的细胞特异性结果仍然是生物学中的一个主要问题。该项目的中心目标是使用将定量数据与数学模型相结合的体内合成生物学方法,建立并测试如何将 Notch 信号转换为特定转录反应的预测模型。含有不同类型 DNA 结合位点的合成 Notch 报告基因用于破译 Notch 转录反应的规则。果蝇遗传学、基因组工程和生物化学用于评估蛋白质稳定性和基因剂量的变化如何影响细胞特异性输出。细胞培养用于开发新的成像工具来实时评估 Notch 信号动力学,并开发计算模拟来描述关键参数(DNA 结合位点组成、效应蛋白比率、蛋白质结合动力学和蛋白质降解)如何改变 TF 复合物浓度、增强子占有率和转录输出。总的来说,这些模型将用于使用基于细胞和整个生物体的分析对 Notch 信号传导进行彻底的定量理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Gebelein其他文献

Brian Gebelein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Gebelein', 18)}}的其他基金

NSF/MCB-BSF: Quantitative analysis and modeling of Notch signaling using in vivo synthetic biology
NSF/MCB-BSF:利用体内合成生物学对 Notch 信号传导进行定量分析和建模
  • 批准号:
    1715822
  • 财政年份:
    2017
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Standard Grant

相似国自然基金

选择性保护式微型断路器的节点模型智能体建模及非线性动力学特性优化研究
  • 批准号:
    51307011
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
单节合型胆红素(MCB)在胆结石生成上的作用
  • 批准号:
    39070790
  • 批准年份:
    1990
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF/MCB-BSF: The effect of transcription factor binding on UV lesion accumulation
合作研究:NSF/MCB-BSF:转录因子结合对紫外线损伤积累的影响
  • 批准号:
    2324615
  • 财政年份:
    2023
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Standard Grant
NSF/MCB-BSF: Probing cellular surplus in single bacterial cells to understand concerted controls of cell growth and adaptation
NSF/MCB-BSF:探测单个细菌细胞中的细胞盈余,以了解细胞生长和适应的协调控制
  • 批准号:
    2309595
  • 财政年份:
    2023
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Standard Grant
NSF/MCB-BSF: De novo design of minimalistic light-switchable protein binding domains
NSF/MCB-BSF:简约光可切换蛋白结合域的从头设计
  • 批准号:
    2306190
  • 财政年份:
    2023
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF/MCB-BSF: The effect of transcription factor binding on UV lesion accumulation
合作研究:NSF/MCB-BSF:转录因子结合对紫外线损伤积累的影响
  • 批准号:
    2324614
  • 财政年份:
    2023
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Standard Grant
NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
  • 批准号:
    2207688
  • 财政年份:
    2022
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了