SHF: Small: High-Performance Multi-Agent Reinforcement Learning

SHF:小型:高性能多智能体强化学习

基本信息

  • 批准号:
    2114415
  • 负责人:
  • 金额:
    $ 49.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Artificial Intelligence (AI) has rapidly become a critical domain with applications in autonomous driving, robotics, aerospace, healthcare, and others. For a machine (AI agent) to closely mimic human behavior and operate effectively, it should possess the capabilities of robust decision making and learning simultaneously as it operates in the environment. Multi-Agent Reinforcement Learning (MARL) is a promising research area that can model and control multiple distributed decision-making AI agents. However, recent studies have shown that the MARL algorithms suffer from inefficiencies that can severely limit their adoption in real-world systems. These problems occur due to complexities in decision-making processes arising from having to observe and act upon a large number of events present in the environment, along with the growth in the number of AI agents needed to interact with each other.To ameliorate the learning efficiency and scalability issues of MARL algorithms, the project investigators adopt a novel interdisciplinary solution approach, harnessing computer architecture, machine-learning theory and optimization. Specifically, the project will seek techniques to improve neural-network throughput, to efficiently manage the state-action space in a dynamic fashion and to scalably encode states and observations of a large and varying number of agents. A hardware-software co-design approach is adopted to accelerate the concurrent optimization of software and hardware layers. The research outcomes of this project will significantly enhance the adoption of MARL frameworks in real-world applications and positively impact university curricular development and the computing industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 已迅速成为自动驾驶、机器人、航空航天、医疗保健等领域应用的关键领域。对于机器(人工智能代理)来说,要紧密模仿人类行为并有效运行,它应该在环境中运行时具备稳健的决策和学习能力。多智能体强化学习(MARL)是一个有前景的研究领域,可以建模和控制多个分布式决策人工智能智能体。然而,最近的研究表明,MARL 算法效率低下,严重限制了它们在现实系统中的采用。这些问题的出现是由于必须观察环境中存在的大量事件并采取行动而导致决策过程变得复杂,以及相互交互所需的人工智能代理数量的增长。针对 MARL 算法的效率和可扩展性问题,项目研究人员采用了一种新颖的跨学科解决方法,利用计算机架构、机器学习理论和优化。具体来说,该项目将寻求提高神经网络吞吐量的技术,以动态方式有效管理状态动作空间,并可扩展地编码大量不同数量代理的状态和观察。采用软硬件协同设计的方式,加速软硬件层的并行优化。该项目的研究成果将显着提高 MARL 框架在实际应用中的采用,并对大学课程开发和计算机行业产生积极影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalability Bottlenecks in Multi-Agent Reinforcement Learning Systems
  • DOI:
    10.48550/arxiv.2302.05007
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kailash Gogineni;Peng Wei;Tian Lan;Guru Venkataramani
  • 通讯作者:
    Kailash Gogineni;Peng Wei;Tian Lan;Guru Venkataramani
MAC-PO: Multi-Agent Experience Replay via Collective Priority Optimization
  • DOI:
    10.48550/arxiv.2302.10418
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongsheng Mei;Hanhan Zhou;Tian Lan;Guru Venkataramani;Peng Wei
  • 通讯作者:
    Yongsheng Mei;Hanhan Zhou;Tian Lan;Guru Venkataramani;Peng Wei
AccMER: Accelerating Multi-Agent Experience Replay with Cache Locality-Aware Prioritization
Towards Efficient Multi-Agent Learning Systems
  • DOI:
    10.48550/arxiv.2305.13411
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kailash Gogineni;Peng Wei;Tian Lan;Guru Venkataramani
  • 通讯作者:
    Kailash Gogineni;Peng Wei;Tian Lan;Guru Venkataramani
Multi-Agent Covering Option Discovery Based on Kronecker Product of Factor Graphs
基于因子图克罗内克积的多Agent覆盖选项发现
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guru Prasadh Venkataramani其他文献

Guru Prasadh Venkataramani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guru Prasadh Venkataramani', 18)}}的其他基金

NSF workshop on side and covert channels in computing systems
NSF 研讨会:计算系统中的侧面通道和隐蔽通道
  • 批准号:
    1747723
  • 财政年份:
    2017
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
CSR:Small:A Server-Network Cooperative Approach to Data Center Energy Optimization
CSR:Small:数据中心能源优化的服务器网络协作方法
  • 批准号:
    1718133
  • 财政年份:
    2017
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
2016 NSF CISE CAREER Proposal Writing Workshop
2016 NSF CISE CAREER 提案写作研讨会
  • 批准号:
    1613621
  • 财政年份:
    2016
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
STARSS: Small: Defending Against Hardware Covert Timing Channels
STARSS:小型:防御硬件隐蔽时序通道
  • 批准号:
    1618786
  • 财政年份:
    2016
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Participant Support for The 48th Annual IEEE/ACM International Symposium on Microarchitecture, 2015
2015 年第 48 届 IEEE/ACM 国际微架构研讨会参与者支持
  • 批准号:
    1546688
  • 财政年份:
    2015
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
CAREER:An Introspective Architecture for Manycore Performance and Power Debugging
职业:多核性能和功耗调试的内省架构
  • 批准号:
    1149557
  • 财政年份:
    2012
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
SHF: Small: Software and Hardware Integration with Feedback and Transparency for Many-Core Computing
SHF:小型:具有反馈和透明度的软件和硬件集成,适用于多核计算
  • 批准号:
    1117243
  • 财政年份:
    2011
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: Predictable Performance for Just-in-Time Compilation
SHF:小型:可预测的即时编译性能
  • 批准号:
    2139612
  • 财政年份:
    2022
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
  • 批准号:
    2223704
  • 财政年份:
    2022
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
  • 批准号:
    2333645
  • 财政年份:
    2022
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Rethinking Performance Variation for Emerging Applications - An Application-centric and Cross-layer Approach
协作研究:SHF:小型:重新思考新兴应用程序的性能变化 - 以应用程序为中心的跨层方法
  • 批准号:
    2134202
  • 财政年份:
    2022
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了