Collaborative Research: CNS Core: Small: Hierarchical Federated Learning Over Wireless Edge Networks: Performance Analysis and Optimization
协作研究:CNS 核心:小型:无线边缘网络的分层联邦学习:性能分析和优化
基本信息
- 批准号:2114283
- 负责人:
- 金额:$ 23.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Federated learning (FL) is revolutionizing machine learning by catalyzing a paradigm shift from cloud-based centralized learning towards distributed, on-device edge learning. FL enables devices to collaboratively train and execute a global learning task by using local processing and simple learning parameters exchange, thus avoiding the communication and privacy concerns associated with sharing large data volumes with a remote cloud. Owing to its attractive privacy, scalability, and communication features, FL will be an integral edge component of Internet of Things (IoT) services such as autonomous systems. However, when deployed over the wireless IoT edge, the performance of FL will be largely constrained by the quality of the wireless links used to exchange the local and global FL model parameters. Since the next-generation IoT will be powered by a wireless cellular system (e.g., 5G), reaping the benefits of FL for the IoT hinges on understanding how wireless factors, such as fading, interference, and delay, impact the convergence and performance of FL (e.g., accuracy, reliability, and convergence time). The goal of this research is to develop a foundational framework that rigorously answers fundamental questions on the achievable FL performance over realistic, large-scale wireless edge networks thus facilitating FL integration unto a real-world IoT. The research is coupled with a well-crafted educational plan that includes a new course at the intersection of communications and machine learning as well as a significant involvement of graduate and undergraduate students at all levels. Broad dissemination and outreach will be ensured via several workshops, tutorials, outreach events, and other tools.This research will develop a novel, holistic framework for performance analysis and optimization of FL over large-scale wireless cellular edge networks. The proposed framework will yield major innovations across both wireless and FL fields: 1) A scalable hierarchical wireless architecture that allows a large-scale implementation of FL over wireless cellular systems, 2) Rigorous performance analysis of hierarchical FL over wireless edge networks that will yield novel FL performance metrics that jointly couple learning performance indicators, such as training accuracy and convergence time, 3) Novel notions of reliability for FL over wireless networks to enable the operation of FL under extreme network conditions and in presence of IoT device mobility and spatio-temporal correlations, and 4) Suitable resource allocation algorithms that can optimize the performance of hierarchical FL over wireless edge networks. The results will be validated using various simulation and experimental means.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联邦学习 (FL) 正在彻底改变机器学习,促进从基于云的集中式学习向分布式设备边缘学习的范式转变。 FL 使设备能够通过使用本地处理和简单的学习参数交换来协作训练和执行全局学习任务,从而避免与远程云共享大量数据相关的通信和隐私问题。由于其具有吸引力的隐私性、可扩展性和通信功能,FL 将成为自治系统等物联网 (IoT) 服务不可或缺的边缘组件。然而,当部署在无线物联网边缘时,FL 的性能将在很大程度上受到用于交换本地和全局 FL 模型参数的无线链路质量的限制。由于下一代物联网将由无线蜂窝系统(例如 5G)提供支持,因此要从物联网中获得 FL 的优势,就必须了解衰落、干扰和延迟等无线因素如何影响物联网的融合和性能。 FL(例如准确性、可靠性和收敛时间)。这项研究的目标是开发一个基础框架,严格回答有关在现实的大规模无线边缘网络上可实现的 FL 性能的基本问题,从而促进 FL 集成到现实世界的物联网中。该研究与精心设计的教育计划相结合,其中包括通信和机器学习交叉领域的新课程,以及各级研究生和本科生的大力参与。将通过多个研讨会、教程、推广活动和其他工具来确保广泛的传播和推广。这项研究将开发一个新颖的整体框架,用于大规模无线蜂窝边缘网络上的 FL 性能分析和优化。所提出的框架将在无线和 FL 领域产生重大创新:1)可扩展的分层无线架构,允许在无线蜂窝系统上大规模实施 FL,2)对无线边缘网络上的分层 FL 进行严格的性能分析,这将产生新颖的 FL 性能指标,将学习性能指标(例如训练精度和收敛时间)结合在一起,3)无线网络上 FL 可靠性的新颖概念,使 FL 在极端网络条件下和存在物联网设备移动性的情况下能够运行时空相关性,以及 4) 合适的资源分配算法,可以优化无线边缘网络上分层 FL 的性能。结果将通过各种模拟和实验手段进行验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omid Semiari其他文献
Downlink Cell Association and Load Balancing for Joint Millimeter Wave-Microwave Cellular Networks
毫米波-微波联合蜂窝网络的下行链路小区关联和负载平衡
- DOI:
10.1109/glocom.2016.7841752 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Omid Semiari;W. Saad;M. Bennis - 通讯作者:
M. Bennis
Context-Aware Resource Management and Performance Analysis of Millimeter Wave and Sub-6 GHz Wireless Networks
- DOI:
- 发表时间:
2017-08 - 期刊:
- 影响因子:0
- 作者:
Omid Semiari - 通讯作者:
Omid Semiari
Omid Semiari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omid Semiari', 18)}}的其他基金
Collaborative Research: NeTS: JUNO3: Towards an Internet of Federated Digital Twins (IoFDT) for Society 5.0: Fundamentals and Experimentation
合作研究:NetS:JUNO3:迈向社会 5.0 的联合数字孪生 (IoFDT) 互联网:基础知识和实验
- 批准号:
2210255 - 财政年份:2022
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Extended Reality over Wireless Cellular Networks: Quality-of-Experience Analysis and Optimization
合作研究:CNS 核心:小型:无线蜂窝网络上的扩展现实:体验质量分析和优化
- 批准号:
2008646 - 财政年份:2020
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
CRII: NeTS: Towards Joint Mobile Broadband and Ultra-Reliable Low-Latency Communications for Connected Autonomous Vehicles
CRII:NeTS:为联网自动驾驶汽车实现联合移动宽带和超可靠低延迟通信
- 批准号:
1941348 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
CRII: NeTS: Towards Joint Mobile Broadband and Ultra-Reliable Low-Latency Communications for Connected Autonomous Vehicles
CRII:NeTS:为联网自动驾驶汽车实现联合移动宽带和超可靠低延迟通信
- 批准号:
1849989 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
相似国自然基金
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
体细胞突变诱导的壁细胞缺陷在中枢神经系统血管畸形出血中的作用机制及干预研究
- 批准号:82330038
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
- 批准号:62363006
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant