Collaborative Research: Understanding Material Transfer Mechanisms in Corona-Enabled Contactless Electrostatic Printing of Binder-free Nano-/micro-Structures
合作研究:了解无粘合剂纳米/微米结构的电晕非接触式静电印刷中的材料转移机制
基本信息
- 批准号:2114223
- 负责人:
- 金额:$ 15.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Printed electronics have a potential to transform the public health, the national security, and society as a whole. Manufacturing innovations are essential to enable cost-effective and scalable production, enhance the performance of printed electronics, and realize their broad applications. Current printing techniques, however, still face long-lasting challenges in addressing the tradeoff between the printing speed versus the print resolution and performance. This award supports fundamental research to advance a novel corona-enabled contactless electrostatic printing (CEP) technique that utilizes the ultra-fast electrostatic attraction phenomenon to achieve the material transfer and manufacturing of binder-free nano-/micro-structures at a large scale. The contactless force control and binder-free nature lead to reduced manufacturing times and temperatures, with broader material options, and an ability to manipulate and assemble nano-/micro-structures, and improved device performance. The roll-to-roll compatibility of the CEP process may also facilitate a pathway for transition from fundamental research to commercial marketplaces, potentially beneficial to large-area and high-performance electronics and versatile applications of flexible functional systems. Through a close collaboration between an R1 university and a minority-serving institution, with additionally an industrial partner, this project also provides hands-on research opportunities and industrial experiences to minority undergraduate students and hosts “Future Electronics” community engagement workshops to local high schools, intended to inspire more students and engineers to participate in, benefit from, and contribute to the blooming U.S. electronics industry.To advance the CEP process, the project will focus on three basic research thrusts by a combination of numerical and experimental approaches. First, through mapping the distribution of charges and computing the distribution of the electric field, the formation and dynamic evolution mechanisms of the electric field will be revealed, which is essential to achieve precision controls. Then, the material transfer mechanism during the CEP process will be studied by investigating the impacts of the material conductivity, geometry and density. The project will also explore methodologies to manufacture aligned nano-/micro-structures by combining an electric field with a mechanical field. Further, the responsive mechanisms of the printed structures to external stimuli will be studied by monitoring the microstructure evolution and electrical performance simultaneously, together with the effects on the performance of the binder-free CEP electronics. Overall, the fundamental understanding of the CEP process is expected to substantially enhance the capability to precisely control an electric field to realize ultra-fast material manipulations, nano-/micro-structure constructions, and high-end electronics manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
印刷的电子产品有可能改变公共卫生,国家安全和整个社会。制造创新对于实现具有成本效益和可扩展性的生产,增强印刷电子产品的性能并实现其广泛应用至关重要。但是,当前的印刷技术在解决印刷速度与打印分辨率和性能之间的权衡方面仍然面临着持久的挑战。该奖项支持基础研究,以推动具有新型的无接触式静电印刷(CEP)技术,该技术利用超快速的静电吸引现象来实现大规模的无粘合剂纳米/微型结构的材料转移和制造。非接触力控制和无粘合剂的性质导致制造时间和温度降低,具有更广泛的材料选择,并且能够操纵和组装纳米/微观结构,并提高了设备性能。 CEP流程的卷到卷兼容性也可能支持从基本研究到商业市场过渡的途径,这可能对大面积和高性能电子设备以及灵活功能系统的多功能应用有益。通过R1大学与少数族裔服务机构之间的密切合作,此外,该项目还为少数群体本科生和主持“未来的电子产品”社区参与研讨会提供了动手的研究机会和工业经验通过数值和实验方法的结合来推力。首先,通过映射电荷的分布并计算电场的分布,将揭示电场的形成和动态演化机制,这对于实现精确控制至关重要。然后,通过研究材料电导率,几何形状和密度的影响来研究CEP过程中的材料转移机制。该项目还将探索通过将电场与机械场相结合的方法来制造对齐的纳米/微结构的方法。此外,将通过同时监视微观结构演化和电性能以及对无粘合剂CEP电子功能的影响来研究印刷结构对外部刺激的响应机制。总体而言,对CEP过程的基本理解有望实质上增强了精确控制电场以实现超快速的物质操作,纳米/微观结构结构和高端电子制造的能力。该奖项反映了NSF的法定任务,反映了通过使用基金会的智力效果评估来评估支持的珍贵,并以智力为基础的宽广和宽阔的影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Long Wang其他文献
Eupenicillium saturniforme, a New Species Discovered from Northeast China
中国东北发现的新种土青青霉菌
- DOI:
10.1007/s11046-008-9179-z - 发表时间:
2009 - 期刊:
- 影响因子:5.5
- 作者:
Long Wang;W. Zhuang - 通讯作者:
W. Zhuang
Draft Genome Sequence of NRRL 5109, an Ex-Type Isolate of Aspergillus neoellipticus
新椭圆曲霉 Ex 型分离株 NRRL 5109 的基因组序列草案
- DOI:
10.1128/mra.01262-18 - 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Licui Li;T. Hsiang;Qili Li;Long Wang;Zhihe Yu - 通讯作者:
Zhihe Yu
Multimodal Fusion for Image and Text Classification with Feature Selection and Dimension Reduction
- DOI:
10.1088/1742-6596/1871/1/012064 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:0
- 作者:
Xinran Liu;Zhongju Wang;Long Wang - 通讯作者:
Long Wang
Flexible Formation Control for Obstacle Avoidance Based on Numerical Flow Field
基于数值流场的柔性避障编队控制
- DOI:
10.1109/cdc.2006.377193 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jinyan Shao;Long Wang;G. Xie - 通讯作者:
G. Xie
Force-Controlled Exploration for Updating Virtual Fixture Geometry in Model-Mediated Telemanipulation
模型介导远程操作中更新虚拟夹具几何形状的力控探索
- DOI:
10.1115/1.4035684 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Long Wang;Zihan Chen;Preetham Chalasani;Rashid M. Yasin;P. Kazanzides;R. Taylor;N. Simaan - 通讯作者:
N. Simaan
Long Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Long Wang', 18)}}的其他基金
ERI: Tailoring Piezoresistive Effect of Nanocomposites using Topological Design
ERI:使用拓扑设计定制纳米复合材料的压阻效应
- 批准号:
2138756 - 财政年份:2022
- 资助金额:
$ 15.63万 - 项目类别:
Standard Grant
ERI: Tool Grasping Compliance and Stability of Underactuated Hands in Model-Mediated Telemanipulation
ERI:模型介导远程操作中欠驱动手的工具抓取顺应性和稳定性
- 批准号:
2138896 - 财政年份:2022
- 资助金额:
$ 15.63万 - 项目类别:
Standard Grant
相似国自然基金
复杂场景下的视频内容增强与理解研究
- 批准号:62372036
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
- 批准号:62373334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
- 批准号:62306239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于场景理解的全景视频智能压缩关键技术研究
- 批准号:62371310
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Continuing Grant