Collaborative Research: Understanding Material Transfer Mechanisms in Corona-Enabled Contactless Electrostatic Printing of Binder-free Nano-/micro-Structures
合作研究:了解无粘合剂纳米/微米结构的电晕非接触式静电印刷中的材料转移机制
基本信息
- 批准号:2114223
- 负责人:
- 金额:$ 15.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Printed electronics have a potential to transform the public health, the national security, and society as a whole. Manufacturing innovations are essential to enable cost-effective and scalable production, enhance the performance of printed electronics, and realize their broad applications. Current printing techniques, however, still face long-lasting challenges in addressing the tradeoff between the printing speed versus the print resolution and performance. This award supports fundamental research to advance a novel corona-enabled contactless electrostatic printing (CEP) technique that utilizes the ultra-fast electrostatic attraction phenomenon to achieve the material transfer and manufacturing of binder-free nano-/micro-structures at a large scale. The contactless force control and binder-free nature lead to reduced manufacturing times and temperatures, with broader material options, and an ability to manipulate and assemble nano-/micro-structures, and improved device performance. The roll-to-roll compatibility of the CEP process may also facilitate a pathway for transition from fundamental research to commercial marketplaces, potentially beneficial to large-area and high-performance electronics and versatile applications of flexible functional systems. Through a close collaboration between an R1 university and a minority-serving institution, with additionally an industrial partner, this project also provides hands-on research opportunities and industrial experiences to minority undergraduate students and hosts “Future Electronics” community engagement workshops to local high schools, intended to inspire more students and engineers to participate in, benefit from, and contribute to the blooming U.S. electronics industry.To advance the CEP process, the project will focus on three basic research thrusts by a combination of numerical and experimental approaches. First, through mapping the distribution of charges and computing the distribution of the electric field, the formation and dynamic evolution mechanisms of the electric field will be revealed, which is essential to achieve precision controls. Then, the material transfer mechanism during the CEP process will be studied by investigating the impacts of the material conductivity, geometry and density. The project will also explore methodologies to manufacture aligned nano-/micro-structures by combining an electric field with a mechanical field. Further, the responsive mechanisms of the printed structures to external stimuli will be studied by monitoring the microstructure evolution and electrical performance simultaneously, together with the effects on the performance of the binder-free CEP electronics. Overall, the fundamental understanding of the CEP process is expected to substantially enhance the capability to precisely control an electric field to realize ultra-fast material manipulations, nano-/micro-structure constructions, and high-end electronics manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
印刷电子产品具有改变公共卫生、国家安全和整个社会的潜力,制造创新对于实现经济高效和可扩展的生产、提高印刷电子产品的性能以及实现其广泛的应用至关重要。然而,在解决打印速度与打印分辨率和性能之间的权衡方面,仍然面临着长期的挑战。该奖项支持基础研究,以推进利用超快静电的新型电晕非接触式静电打印(CEP)技术。吸引现象大规模实现无粘合剂纳米/微米结构的材料转移和制造,非接触式力控制和无粘合剂特性可减少制造时间和温度,提供更广泛的材料选择,并具有操纵和制造的能力。组装纳米/微米结构,并提高设备性能,CEP 工艺的卷对卷兼容性也可能促进从基础研究到商业市场的过渡,可能有利于大面积和高性能电子产品和技术。灵活的功能系统的多种应用。通过 R1 大学和少数族裔服务机构之间的密切合作,以及行业合作伙伴,该项目还为少数族裔本科生提供实践研究机会和行业经验,并为当地高中举办“未来电子”社区参与研讨会旨在激励更多的学生和工程师参与蓬勃发展的美国电子行业并从中受益并做出贡献。为了推进 CEP 进程,该项目将通过绘图结合数值和实验方法,重点关注三个基础研究方向。费用的分配并计算电场的分布,揭示电场的形成和动态演化机制,这对于实现精确控制至关重要。然后,将通过研究电场的影响来研究CEP过程中的材料传递机制。该项目还将探索通过将电场与机械场相结合来制造对齐的纳米/微米结构的方法,此外,还将通过监测来研究印刷结构对外部刺激的响应机制。同时微观结构演变和电性能,以及对总体而言,对 CEP 过程的基本了解有望大大提高精确控制电场的能力,以实现超快材料操作、纳米/微米结构构造和高这反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Long Wang其他文献
Enhancing interfacial adhesion of MXene nanofiltration membranes via pillaring carbon nanotubes for pressure and solvent stable molecular sieving
通过支撑碳纳米管增强 MXene 纳滤膜的界面粘附力,实现压力和溶剂稳定的分子筛分
- DOI:
10.1016/j.memsci.2020.119033 - 发表时间:
2021-04 - 期刊:
- 影响因子:9.5
- 作者:
Dan-Dan Shao;Qingxiao Zhang;Long Wang;Zhen-Yuan Wang;Yi-Xuan Jing;Xue-Li Cao;Fang Zhang;Shi-Peng Sun - 通讯作者:
Shi-Peng Sun
High performance organic ultraviolet photodetectors based on novel phosphorescent Cu(I) complexes
基于新型磷光Cu(I)配合物的高性能有机紫外光电探测器
- DOI:
10.1016/j.sse.2013.06.005 - 发表时间:
2013-11 - 期刊:
- 影响因子:0
- 作者:
Bin Su;Long Wang;Xinxin Zhang;Shi Zhang - 通讯作者:
Shi Zhang
Metabolic Abnormalities Rather Than BMI, Associated With Increased Risk of Recurrent Stroke in Chinese Hospitalized Stroke Patients: A Retrospective Study
代谢异常而非体重指数与中国住院中风患者中风复发风险增加相关:一项回顾性研究
- DOI:
10.21203/rs.3.rs-579117/v1 - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Xiaolin Huang;Jiaojiao Zhou;Hong Zhang;Pei Gao;Long Wang;Yuting Yang;Xiaohong Jiang;Lu Chen;Fei Hua - 通讯作者:
Fei Hua
Three-dimensional elastic-plastic damage constitutive model of wood
木材三维弹塑性损伤本构模型
- DOI:
10.1515/hf-2019-0247 - 发表时间:
2020-10 - 期刊:
- 影响因子:2.4
- 作者:
Lipeng Zhang;Qifang Xie;Baozhuang Zhang;Long Wang;Jitao Yao - 通讯作者:
Jitao Yao
Seismic Behavior of Chinese Traditional Timber Frames with Masonry Infill Wall: Experimental Tests and Hysteretic Model
中国传统木框架砌体填充墙的抗震性能:实验测试和滞回模型
- DOI:
10.1080/15583058.2019.1665140 - 发表时间:
2019-09 - 期刊:
- 影响因子:2.4
- 作者:
Qifang Xie;Yanyang Tong;Lipeng Zhang;Li Shengying;Long Wang - 通讯作者:
Long Wang
Long Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Long Wang', 18)}}的其他基金
ERI: Tailoring Piezoresistive Effect of Nanocomposites using Topological Design
ERI:使用拓扑设计定制纳米复合材料的压阻效应
- 批准号:
2138756 - 财政年份:2022
- 资助金额:
$ 15.63万 - 项目类别:
Standard Grant
ERI: Tool Grasping Compliance and Stability of Underactuated Hands in Model-Mediated Telemanipulation
ERI:模型介导远程操作中欠驱动手的工具抓取顺应性和稳定性
- 批准号:
2138896 - 财政年份:2022
- 资助金额:
$ 15.63万 - 项目类别:
Standard Grant
相似国自然基金
基于场景理解和视觉推理的光电集成芯片表面缺陷检测方法研究
- 批准号:52375499
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向长文本的机器阅读理解关键技术研究
- 批准号:62306040
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
- 批准号:62306239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理解释的深度学习云对流参数化方案研究
- 批准号:42305174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 15.63万 - 项目类别:
Standard Grant